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EXPLICIT VON NEUMANN STABILITY CONDITIONS FOR
THE c-1 SCHEME—A BASIC SCHEME IN THE DEVELOPMENT
OF THE CE-SE COURANT NUMBER INSENSITIVE SCHEMES

Sin-Chung Chang
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

As part of the continuous development of the space-time conservation element and solution element
(CE-SE) method, recently a set of so called “Courant number insensitive schemes” has been proposed. The
key advantage of these new schemes is that the numerical dissipation associated with them generally does
not increase as the Courant number decreases. As such, they can be applied to problems with large Courant
number disparities (such as what commonly occurs in Navier-Stokes problems) without incurring excessive
numerical dissipation.

A basic scheme in the development of the Courant number insensitive schemes is the so called “c-t

scheme”. It is a solver of the PDE
ou ou

huted 20
ot + e
where a # 0 is a constant. At each space-time staggered mesh points (j,n), the ¢-7 scheme is formed by
1 n—1/2 n—1/2 n—1/2 n—1/2
uf = 3 {(1 + V)uj71/2 +(1- V)ujﬂ//2 + (1 -3 (ugfc)jil//2 — (U;z)jﬂ//Q}}
and 1
. n—1/2 n—1/2 n—1/2 n—1/2
(ua)j = 21+7) {ui+1/2 (2w =) (Ua) ) — gy — (120 - T)(uf)y‘fl/?}

Here: (i) u? and (uz)?}, respectively, denote the numerical analogues of u and (ax/4)0u/0z at the mesh
point (j,n); (ii) v def aat/Ax is the Courant number; and (iii) 7 is an adjustable parameter # —1.

Because the c-7 scheme is formed by two rather complicated equations involving two parameters v and
T, it were not expected that its von Neumann stability conditions could be cast into an explicit analytical
form. Against this expectation, it will be shown rigorously in this paper that, based on the von Neumann
analysis, the c-7 scheme is stable if and only if

<1, 1> TO(VQ), and (1/2,7) #(1,1)

where
0 if =0
4—2-2/20 -z a2
To(z) 4 - m( T2 i g<a<3/ll
—1+VI-2 2
rolT 5 TEST ¢ 3i<a<i
x

Note that the current stability conditions are in complete agreement with those generated numerically and
reported earlier.

In addition, it will be shown that: (i) 7,(z) is continuous at z = 0; (ii) 7,(x) is consistently defined at
x = 3/11; (iii)
lim 7/(z) = 111£1+T;(x) =121/90

3~ =
T— 37 T— 37

where 7/ (z) def dro(z)/dx; (iv) To(x) is strictly montonically increasing in the interval 0 < x < 1; and (v)

r < 7(7) < Vx, 0<z<l1
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1. Introduction

As part of the continuous development of the space-time conservation element and
solution element (CE-SE) method [1-11], recently a set of so called “Courant number
insensitive schemes” has been reported in [9-11]. The key advantage of these new schemes
is that the numerical dissipation associated with them generally does not increase as the
Courant number decreases. As such, they can be applied to problems with large Courant
number disparities (such as what commonly occurs in Navier-Stokes problems) without
incurring excessive numerical dissipation.

A basic scheme in the development of the Courant number insensitive schemes is the
so called “c-1 scheme” [11]. It is a solver of the PDE

ou ou

where a # 0 is a constant. Consider Fig. 1 and let {2 denote the set of all space-time
staggered mesh points (dots in Fig. 1), where n = 0,+1/2, £1,4+3/2,£2,.. ., and, for each
n,j=n=+1/2,n+t3/2,n+t5/2,.... Then, at each (j,n) € €, the ¢-7 scheme is formed by

n 1 n—1/2 n—1/2 2 n—1/2 n—1/2
uj =5 {(1 F)uy gy + (L= vug gy + (1 =v7) [(uz); )5 — (uf)j+1/2} } (1.2)

and

n 1 n—1/2 n—1/2 n—1/2 n—1/2
(uz)} = 72(1 1) [uj+1/2 —(1+2v - T)(uf>j+1/2 U1y T (1—2v— T)(uf)j—1/2}
(1.3)

Here: (i) u} and (uz)?, respectively, denote the numerical analogues of u and (az/4)0u/0x
at the mesh point (j,n); (ii)
et aal (1.4)
AZ
is the Courant number; and (iii) 7 is an adjustable parameter # —1. It is shown in [12]
that Egs. (1.2) and (1.3) are consistent with a pair of PDEs with Eq. (1.1) being one of
them.

Because the c-7 scheme is formed by two rather complicated equations involving two
parameters v and 7, it was not expected that its von Neumann stability conditions could
be cast into an explicit analytical form. But to the contrary, it will be shown rigorously in
this paper that, based on the von Neumann analysis, the c-7 scheme is stable if and only

if

¥ <1, 7>1,%), and (V3 7)#(1,1) (1.5)
where
(0 if =0
4—x—-2/2Q2—-2—22) .
o(z) & . if 0<z<3/11 (1.6)
—14+v1-2 52
ro o 5 TEOT i 3l<a<t
\ T
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Note that the current stability conditions are in complete agreement with those generated
numerically and reported earlier in [11].

In addition, it will be shown that: (i) 7,(z) is continuous at = = 0; (ii) 7,(x) is
consistently defined at x = 3/11; (iii)

lim 7/(z) = limJr 7! (z) =121/90 (1.7)
i z— T

T—
where 7/ (x) o dro(x)/dx; (iv) 7o(x) is strictly monotonically increasing in the interval
0<z<1;and (v)

T < To(z) < V7, 0<z<l1 (1.8)

Egs. (1.5) and (1.8) coupled with the facts that 7,(0) = 0 and V2 = |v| imply that
the c-7 scheme is stable if
r=<1 (1.9)

On the other hand, Egs. (1.5) and (1.8) imply that the c-7 scheme is unstable for the cases
(i)
v > 1 (1.10)
and (ii)
r=v? and 0<1*<1 (1.11)
Note that, for a reason explained in [9,11], the special ¢-7 scheme with Eq. (1.9) is a
Courant number insensitive solver for Eq. (1.1).

The rest of the paper is outlined as follows. For any pair of v and 7, and any phase
angle 0, the amplification matrix Q(v, 7, 0) that arises from the von Neumann stability
analysis is presented in Sec. 2 (see Eq. (2.8)). The definition of stability (Definition 1)
is then given in the same section in terms of the behaviors of [Q(v, T,0)]™, —m < 0 < T,
as the integer m — +oo. In Sec. 3, Theorems 1 and 2 are introduced to link stability
with the spectal radii p(Q(v, 1,6)) of Q(v,7,0), —7 < § < 7. Based on the preliminaries
given in Secs. 2 and 3, the main results are given in Sec. 4. Specifically, Sec. 4 begins
with Theorem 3, in which the necessary and sufficient stability conditions are expressed
implicitly in terms of a requirement on p(Q(v,7,0)), —m < 0 < 7w. It is then followed
by a systematic and rigorous effort to obtain the explicit solution to the above implicit
conditions. Finally, conclusions and discussions are presented in Sec. 5. Moreover, to give
the reader extra confidence on the main results established analytically in Theorems 34 and
35, these theorems are further validated numerically in Appendices A and B, respectively.
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2. von Neumann Stability Analysis

For any (j,n) € , let

def s
q(j,n) = (2.1)
(uz)?
. 1+v 1—v?
def
Q+(v, 1) = 9 -1 1—-2v—1 (2.2)
1+7 1+7
and
. 1—v  —(1-v?)
def
Q-(v,7) = ) 1 142 —171 (2.3)
1+7 1+7
where
1+7#0 (2.4)
is assumed. Then Eqgs. (1.2) and (1.3) can be expreseed as
q(,n)=Q+d(j—1/2,n=1/2)+Q-4(j +1/2,n—1/2) (2.5)

Hereafter Q4 (v, 7) and Q_ (v, 7) may be abbreviated as @+ and Q) _, respectively.
To study the stability of the ¢-7 scheme using the von Neumann analysis [1], for all
(4,m) € Q, let
q(j,n) = q*(n,0)e? (2.6)

Here (i) i & =1, (ii) 6, —0o < 0 < +oo, is the phase angle variation per Az, and (iii)
q*(n,0) is a 2 x 1 column matrix. Substituting Eq. (2.6) into Eq. (2.5) and using Eq. (2.4),
one has

7" (n+1/2,0) =Q(v,1,0)7" (n,0) (2.7)

where n =0,+1/2,+1,+3/2,..., and

Qr,7,0) € = 12Q (v,7) + ¢/2Q_(v,7)

cos(0/2) —ivsin(0/2) —i(1 — v?)sin(6/2) (2.8)
= isin(6/2) _[(1=7)cos(8/2) + 2ivsin(d/2)
1+7 I+7

Because of Eq. (2.7), Q(v, 7,0) is referred to as the amplification matrix of the ¢-7 scheme
per marching step (or per at/2). Also, by using Eq. (2.7), one has

¢ (n+m/2,0) = [Qv,7,0)]"¢" (n,0) (2.9)
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where m =1,2,3,...and n = 0, £1/2, £1, £3/2, .. .
As a result of Eq. (2.9), we have Definition 1.

Definition 1. The c-7 scheme is said to be stable with respect to a given ordered pair
(v, 1) if, for every 0, —oco < 6 < 400, all elements of the matrix [Q(v, T, 8)]™ associated
with this pair remain bounded as the positive integer m — +o00. On the other hand, the
scheme is said to be unstable with respect to a given (v, 7) if, for any 6, —oo < 6 < +o0, at
least one element of the matrix [Q(v, T, #)]™ associated with this (v, 7) becomes unbounded
as m — +oo. Hereafter, a given (v, T) is said to be c-7 stable (unstable) if the c-T scheme
is stable (unstable) with respect to this (v, 7).

Note that: (i) Eq. (2.8) implies that, for any integer ¢,
Qv, 7,0 +2m) = (-1)°Q(v, 7,0) (2.10)

and (ii) for any 0, —oo < 6 < +o0, there are a 6/, —7 < ¢’ < 7 and an integer ¢ such
that 0 = 0’ + 2¢w. As such, Definitions 1 is equivalent to the simplified form in which the
original range of 6, i.e., —0o < 6 < 400, is replaced by

—T<0<T (2.11)

Hereafter, the simplified form of Definition 1 is assumed.

Given Definition 1, it will be shown in this paper that a given (v, 7) is ¢-7 stable if and
only if it satisfies Eq. (1.5). As a first step, in Sec. 3 we will answer the following question:
For any given ordered set (v, ,0), what are the requirements the matrix Q(v, 7, ) must
meet so that all elements of the matrix [Q(v, 7, 0)]™ will remain bounded as m — +00?

NASA/TM—2005-213627 6



3. Two Matrix Theorems

Let M be any N x N matrix with real or complex elements. By definition, the
eigenspace of M is the vector space spanned by its eigenvectors. Let the dimension of this
eigenspace be denoted by N’. Then 1 < N’ < N. The matrix is said to be (i) nondefective
if N' = N and (ii) defective if N’ < N [13].

Hereafter let N = 2. Then the eigenvalues A\; and Ay of the matrix M are the two
roots of a quadratic characteristic equation. Moreover, we have Theorem 1.

Theorem 1. The matrix M is defective if and only if (i) Ay = Ao, and (ii) M # A1,
where [ is the 2 x 2 identity matrix and A. is the common value of \; and A,.

Proof. Let 51 and 52 be two nonnull 2 x 1 column matrices with
Mby = \by,  £=1,2 (3.1)

Then, for each /, Z;g is an eigenvector of M with the eigenvalue A;. In case that A\ # Ao, it
is known that by and by are linearly independent [13]. Thus N’ = 2 and M is nondefective.

Next let Ay = Ay and M be nondefective. Then N’ = 2, i.e., there exist two linearly
independent 2 x 1 column matrices by and by that satisfy Eq. (3.1). Let

. bis
b = L 0=1,2 (3.2)
bae
and
bll b12
Y (3.3)
b21 b22

Then, because A\; = Az, Eq. (3.1) can be expressed as
(M —-XI)B=0 (3.4)

where ). is the common value of A1 and A\y. Because 51 and 52 are linearly independent, B
is nonsingular [13]. Thus, B~!, the inverse of B, must exist. Multiplying the expressions on
the two sides of Eq. (3.4) from the right with B~! leads to the conclusion that M —\.I = 0,
ie., M = \I.

Conversely let M = A.I where A, is any scalar. Then it can be shown easily that
(i) A1 = A2 = A, and (ii) any 2 x 1 nonnull column matrix is an eigenvector of M. The
conclusion (ii) implies that N’ = 2 and thus M is nondefective.

It has been shown that: (i) M is nondefective if A\; # Ay; and (ii) in case that A\; = Ao,
M is nondefective if and only if M = A.I (i.e., M is defective if and only if M # A.I)
where \. is the common value of A1 and A5. Thus the proof is completed. QED.

NASA/TM—2005-213627 7



Next let (i) m be an integer > 0; and (ii) p(M) be the spectral radius of M, i.e.,

p(M) = max{| A, [Az]} (3.5)

Then we have Theorem 2.

Theorem 2. Every element of M™ will remain bounded as m — +oc if and only if

<1 if M is nondefective
p(M) { (3.6)

<1 if M is defective

Proof. According to the Jordan canonical form theorem [13], there exists a nonsin-
gular 2 x 2 matrix S such that

M = SAS™! (3.7)
Here (i) S™! is the inverse of S; (ii)
. A 0
AY if M is nondefective (3.8)
0 Ao
and (iii)
Ae 1
AY if M is defective (3.9)
0 A

Note that A in Eq. (3.9) is the common value of A\; and Ay in the defective case.
By using Eqgs. (3.8) and (3.9), one has: (i)

AP0
AT = if M is nondefective (3.10)
0 AR
and (ii) 1
AT mAT
AT = if M is defective (3.11)
0 AT

Because (i) Eq. (3.7) implies that
M™ = SA™S™1 (3.12)
and (ii) Eq. (3.12) is equivalent to

A" =STtM™S (3.13)

NASA/TM—2005-213627 8



one can infer from Eq. (3.10) that, for the nondefective case, every element of M™ will
remain bounded as m — +oo if and only if

p(M) <1 (the nondefective case) (3.14)
On the other hand, for the defective case, by using (i) p(M) = |A.|, and (ii)

0 if [\ <1
lim |mA" | = (3.15)
mee too if A >1

Egs. (3.11)—(3.13) imply that, for the defective case, every element of M™ will remain
bounded as M — 4o0 if and only if

p(M) <1 (the defective case) (3.16)

Because Eq. (3.6) is the combined form of Egs. (3.14) and (3.16), the proof is completed.
QED.

At this juncture, note that the term |[mA”~!| grows linearly with m as m — +oo if
|Ac| = 1. Thus, for the defective case with |A.| = 1, the growth rate of the magnitude of
any element of M™ as m — +oo is very low compared with the exponential growth rate
associated with a nondefective or defective case with p(M) > 1. The implication of this
observation will be addressed later.

NASA/TM—2005-213627 9



4. Main Results

An immediate result of Definition 1 and Theorem 2 is Theorem 3.
Theorem 3. A given (v, 7) is ¢-7 stable if and only if the condition

<1 if Q(v,7,0) is nondefective
p(Q(v,T,0)) (4.1)

<1 if Q(v,7,0) is defective
associated with the given (v, 7) is met for all , —7 < 0 < 7.
Two immediate results of Theorem 3 are Theorems 4 and 5.

Theorem 4. A necessary condition for any given (v, 7) to be c-7 stable is

p(Qv,7,0)) <1, —T<0<m (4.2)

Theorem 5. In case that

p(Qv,7,0)) # 1 (4.3)

for all defective Q(v,7,0) (—m < 6 < ) associated with a given (v,7), Eq. (4.2) is also a
sufficient condition for this (v, 7) to be c¢-7 stable.

From Theorem 3, it becomes clear that a thorough stability study of the c-7 scheme
requires a systematic investigation of the matrix Q(v,7,0) and its eigenvalues over the
entire range of v, 7, and 6. In the following, first we shall try to narrow down the possible
(v, 7) that are c-7 stable by ruling out those that fail to satisfy Eq. (4.2).

Let det(M) denote the determinant of any square matrix M. Then any eigenvalue A
of Q(v, 1, 0) satisfies the characteristic equation det (Q(v, 7,0) — A\I) =0, i.e.,

(14 7)A\? — [27 cos(0/2) — iv(3 + 7) sin(6/2)] A

2 2 .2 . . (44)
— (1 —7)cos*(0/2) — (1 +v*)sin*(0/2) —iv(1 + 7) sin(6/2) cos(6/2) = 0
Let
X(v,7,0) & 4cos(0/2) + [4(1 +7) — v2(7% + 27 + 5)] sin?(0/2) (4.5)
and
Y (v, 7,0) < 40(1 — 7)sin(6/2) cos(6/2) (4.6)

Then, with the aid of Eq. (2.4), Eq. (4.4) implies that A = A; (v, 7,60) or A = A_(v, 7,6)
where

Ae (v, ) e 27€08(0/2) —iv (3 + 7)sin(0/2) £ VX + iV
R 2(1+71) ’

1+7#0 (4.7)

NASA/TM—2005-213627 10



Hereafter X (v,7,0) and Y (v, 7,6) may be abbreviated as X and Y, respectively. Because
the range of the phase angle ¢ in the polar form of the principal square root v/ X + Y is
—m/2 < ¢ < 7/2, it can be shown that

VX +iY = % [\/\/X2+Y2—|—X—|—isign(Y)\/ X2+4+Y2-X (4.8)

where

def

sign(Y) =

1 itY >0
{ (49

-1 ifY <0
With the aid of Eq. (4.8), Eq. (4.7) implies that

1

At (v, 7,0) = m{QTCOS(@/Q) + %\/\/X2 +Y2+ X

(1+7#0)  (4.10)

—1 1/(3+T)sin(9/2)$%sign(Y)\/ X2+Y2—X}}

Next Eq (4.10) is used to yield
2014+ 7)2(AL)> + A% = 472 cos?(0/2) + v*(3 + 7)%sin?(0/2) + VX2 + Y2 (4.11)

and

(1+7)AALPIA_ 2 = (1 —7)%cos*(8/2) + (1 + v?)?sin*(0/2)

_ (4.12)
+ (2 — 27 + 3% + 720%) sin?(6/2) cos?(6/2)

For simplicity, hereafter A\, (v, 7,0) and A_(v,7,0) may be abbreviated as Ay and A_,
respectively. Next, let

s sin?(6/2), —T<0<m (4.13)

Then
cos?(0/2) =1—s (4.14)

and, corresponding to the domain —7 < 6 < 7, the range of s is
0<s<1 (4.15)
Next, let

D(v,T,s) def 21 = v?) (12 = v?)s* + [A7 + (77 — 67 — 3)1°] s + 4, 0<s<1 (4.16)

E(v,T,s) o (1672 — 8(7° +47% + 74+ 2)v° + (1 + 27 + 5)*] §°

(4.17)
+8[4r+ (r* =67 —3)*]s+16, 0<s<1

NASA/TM—2005-213627 11



and
Fr,r,5) & (1 =122 = 72)s* = [27(1—7) + B+ 7] s +4r, 0<s<1 (418)

Then, by using Eqgs. (4.5), (4.6), and (4.11)—(4.14), it can be shown that

E(w,7,s)=[X(w,7,0)] +[Y(v,7,0)] >0 (4.19)
D(v,7,8) — VE(v,7,5) =2(1+7)* (1 — |A+]?) (1 — [A_]?) (4.20)

and
F(v,7,8) = (14+7)% (1= [AL]?|A=?) (4.21)

As a preliminary to the future development, let
H(v,T,s) def [D(v,T,5)]> — E(v,T,5) (4.22)
Then Eqgs. (4.16) and (4.17) imply that
H(v,7,8) =4(1 — v*)s*G(v, T, 5) (4.23)
where

G(v,7,8) = (1= (1% = v?)?s® + (2 = V°) [1/272 + (4 — 60%)T — 3V2] s

(4.24)
+4r [P+ (11— =%, 0<s<1

With the above preparations, we have Theorem 6.

Theorem 6. (A) For any (v, 7), the condition Eq. (4.2) is equvalent to the conditions

D(v,T,s) >0, 0<s<1 (4.25)

H(v,7,s) >0, 0<s<1 (4.26)
and

F(v,71,s) >0, 0<s<1 (4.27)

(B) Egs. (4.25)—(4.27) are necessary conditions for any (v, 7) to be ¢-7 stable.

Proof. Part B is an immediate result of part A and Theorem 4. Thus only part A
needs to be proved. To proceed, note that |\ | <1 and |[A_| <1 if and only if (i)

(L= P) (1= A-) =0

and (ii)
(1= A PA-P) 2 0,

NASA/TM—2005-213627 12



Thus, by using Egs. (3.5), (2.4), (4.15), (4.20), and (4.21), it is easy to see that Eq. (4.2)
is equivalent to Eq. (4.27) and

D(v,7,8) —\/E(v,71,5) >0, 0<s<1 (4.28)

As a result, to complete the proof, one needs only to show that Eqs. (4.25) and (4.26) is
equivalent to Eq. (4.28).

To proceed, for simplicity, in the following D(v, 1,s), E(v,1,s), F(v,1,s), G(v, T, s),
and H (v, 1,s) may be abbreviated as D, E, F, G, and H, respectively. By using the fact
that £ > 0 (see Eq. (4.19)), it is easy to show that the condition D —+/E > 0 implies that
(i) D > 0 and (i)

D>~ E=(D+VE)D-VE)>0 (4.29)

Thus, with the aid of Eq. (4.22), one concludes that Eq. (4.28) implies both Eqgs. (4.25)
and (4.26).
To show that Eqs. (4.25) and (4.26) imply Eq. (4.28), note that

D—-VE=D>0 ifD>0and E =0 (4.30)

Moreover, because D ++E > 0if D > 0 and E > 0, one has
D2_E . 2
D—\F:Dizo if D>0, D>~ E>0, and E >0 (4.31)

Thus, with the aid of Eqs. (4.19), (4.22), (4.30) and (4.31), one concludes that Eqgs. (4.25)
and (4.26) indeed imply Eq. (4.28). QED.

At this juncture note that, given any (v, 1), D(v,1,s), F(v,1,s) and G(v, T, s) are all
quadratic polynomials in s and thus their minimum values in the interval 0 < s < 1 are
easy to evaluate. As will be shown, this makes the analytical study of Eqs. (4.25)—(4.27)
a relatively simple one. This is very fortunate because, according to Theorem 6, these
equations play key roles in the current stability study.

To proceed, note that an immediate result of Theorem 6 is Theorem 7.

Theorem 7. (i) D(v,7,0) > 0, (ii) D(v,7,1) > 0, (iii) F(v,7,0) > 0, (iv) F(v,7,1) >
0, (v) H(v,7,0) > 0, and (vi) H(v,7,1) > 0 are all necessary conditions for a given (v, 7)
to be c-7 stable.

To study conditions (i)—(vi) referred to above, Eqgs. (4.16) (4.18), (4.23), and (4.24)
are used to yield

D(v,1,0) =4 (4.32)
D(v,1,1)= (2 — 1/2)7'2 +2(2 — 3V2)7' + w4 — 5244 (4.33)
F(v,7,0) =41 (4.34)
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Fv,7,1) = 2+ 7+ 1) (1 —1?) (4.35)
H(v,7,0)=0 (4.36)

and
H(v,7,1) =41 - v*)(t = v*)* [(24 7)* — V7] (4.37)

According to Egs. (4.32) and (4.36), conditions (i) and (v) referred to in Theorem 7 are
satisfied automatically. The significance of other conditions will be partially addressed in
the following Theorems 8-11.

Theorem 8. F(v,7,0) >0 and F(v,7,1) > 0 if and only if 7 > 1.

Proof. According to Eq. (4.34), F(v,7,0) > 0 if and only if 7 > 0. With the aid of
Eq. (4.35) and the fact that 2+ 7+ v? > 0 if 7 > 0, one concludes that F(v,7,0) > 0
and F(v,7,1) > 0 imply 7 > v?. Conversely, it is easy to see that F(v,7,0) > 0 and
F(v,7,1) > 0if 7 > 2. QED.

Theorem 9. Let 7 > v2. Then H(v,7,1) > 0 if and only if 7 > v? and v? < 1.

Proof. With the aid of the assumption 7 > v? and Eq. (4.37), H(v,7,1) > 0 implies

(i) 7 > v? and (ii)
V-1 = 24717 >0 (4.38)

Because 7 > v? implies 7 > 0 and thus v? — 1 > v? — (2 + 7)2, conditions (i) and (ii)
imply either (a) ¥? < 1 or (b) v? > (2 + 7)2. Case (b) can be ruled out because it along
with condition (i) implies 7 > (2+7)?, a result inconsistent with 7 > 0 which follows from
condition (i). Thus H(v,7,1) > 0 implies 7 > v and v? < 1, if 7 > /2 is assumed.

Conversely, because (2+7)% > 7 > v? if 7 > 1%, Eq. (4.37) implies that H (v, 7,1) > 0
if 7 > 1% and v? < 1. Thus the proof is completed. QED.

Theorem 10. Let 7 > v2. Then H(v,7,1) = 0 if and only if at least one of the two
cases: (i) 7 =12 and (ii) v? = 1, is true.

Proof. Eq. (4.37) implies that H(v,7,1) = 0 if and only if at least one of the three
cases: (i) v? =1, (ii) 7 = v?, and (iii) v? = (2 + 7)?, is true. Case (iii) can be ruled out
because it along with the assumption 7 > v? implies 7 > (2 + 7)?, a result inconsistent
with 7 > 0 (which follows from 7 > v2?). Thus the proof is completed. QED.

Theorem 11. Let 7 = v2. Then D(v,7,1) > 0 if and only if v? < 1.
Proof. Let 7 = v2. Then Eq. (4.33) implies that

D(v,7,1) = (1 — 7)(7%* + 37 + 4) (r=1?) (4.39)
With the aid of Eq. (4.39) and the fact that

T2+ 3r4+4=(1+3/2)*+7/4>7/4, —00 < T < +00 (4.40)
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it is easy to see that, assuming 7 = v, D(v,7,1) > 0 if and only if ? < 1. QED.

According to Theorems 8-10, the conditions (i) F(v,7,0) > 0, (ii) F(v,7,1) > 0, and
(iii) H(v,7,1) > 0 require that 7 = v/? if the conditions 7 > v? and v? < 1 are not satisfied
simultaneously. On the other hand, according to Theorem 11, the condition D(v,7,1) > 0
requires that v? < 1 for the case 7 = v?. Thus one has Theorem 12.

Theorem 12. The conditions (i) D(v,7,1) > 0, (ii) F(v,7,0) > 0, (iii) F(v,7,1) > 0,
and (iv) H(v,7,1) > 0 require that 7 > v? and v? < 1. As such, Theorem 7 implies that

r>v? and 1*<1 (4.41)

are necessary conditions for a given (v, 7) to be ¢-7 stable.

In the following, it will be shown that only a subset of those 7 and v that satisfy
the necessary conditions Eq. (4.41) will also satisfy the sufficient conditions for stability.
As a prerequisite, we shall first study the conditions under which the matrix Q(v, 7, 0) is
defective if 7 and v satisfy Eq. (4.41). We begin with Theorem 13.

Theorem 13. Let 7 > v? and v?2 < 1. Then Q(v, 7, 60) is defective if and only if
414 7) =41 + 27+ 5) (4.42)

and
cos(6/2) =0 (4.43)

Proof. Assuming 7 > v? and v? < 1, first we will show that
Ay (v, 7,0) = A_(v,1,0) (4.44)

if and only if Eqgs. (4.42) and (4.43) are satisfied. According to Eq. (4.10), Eq. (4.44) is
equivalent to

VXZ4Y24X=0 and VX2+Y2- X =0 (4.45)

Thus Eq. (4.44) is true if and only if
X=Y=0 (4.46)
According to Eq. (4.6), Y = 0 if and only if at least one of the four cases: (a) v =0,

(b) 7 =1, (c) sin(6/2) = 0, and (d) cos(6/2) = 0, is true. For case (a) v = 0, Egs. (4.5)
and the assumption 7 > v? imply that

X =4[1+7sin*(0/2)] >4 (v =0) (4.47)

Thus case (a) is incompatible with Eq. (4.46).
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For case (b) 7 =1, Eq. (4.5) implies that
X = 4cos?(6/2) + 8(1 — v*) sin?(0/2) (r=1) (4.48)

Using the assumption v? < 1, Eq. (4.48) implies that, for case (b), X = 0 if and only if
v? =1 and cos(0/2) = 0.

Because cos?(0/2) = 1 if sin(0/2) = 0, Eq. (4.5) implies that X = 4 if sin(0/2) = 0.
Thus case (c) is incompatible with Eq. (4.46).

Because sin?(/2) = 1 if cos(/2) = 0, Eq. (4.5) implies that

X=41+71)—v*(r?*+27+5) (cos(6/2) = 0) (4.49)

if cos(0/2) = 0. Thus, for case (d), X = 0 if and only if Eq. (4.42) is satisfied.
Assuming 7 > v? and v? < 1, it has been shown that X = Y = 0 if and only if at
least one of the following two conditions: (i)

=1, v =1, and cos(6/2)=0 (i.e., case (b))
and (ii)
cos(0/2) =0 and 4(1+7)=1*(7*+27+5) (i.e., case (d))

is met. Because 7 = 1 and v? = 1 form a special solution of Eq. (4.42), condition (i) is
only a special case of condition (ii). Thus, assuming 7 > v? and v? < 1, Eq. (4.44) (which
is equivalent to X =Y = 0) is true if and only if Eqs. (4.42) and (4.43) are satisfied.
Moreover, with the aid of Eq. (2.8) and the fact that sin(6/2) = £1 if cos(6/2) = 0,
Eq. (4.43) also implies that one of the off-diagonal elements of Q(v, 7, 6) does not vanish
and thus Q(v, 7, 0) is not a multiple of I. According to Theorem 1, Q(v, 7, 0) is defective if
and only if (i) Eq. (4.44) is true and (ii) Q(v, 7, 0) is not a multiple of I. Thus the current
theorem is proved. QED.

An immediate result of Theorem 13 is Theorem 14.
Theorem 14. The matrix Q(v, 7, 0) is defective if 7 = v? = 1 and cos(6/2) = 0.
To proceed, we will establish Theorem 15.

Theorem 15. Let Q(v,7,0) be defective with 7 > 12 and v? < 1. Then the special
case

p(Qv,7,0)) =1 (4.50)

occurs if and only if
r=v?=1, and cos(/2)=0 (4.51)

Proof. As a preliminary, first we will deduce several results from the current basic
assumption, i.e., Q(v, 1, 0) is defective with 7 > v? and v? < 1. According to Theorem 13
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and its proof, Eqs. (4.42), (4.43), and (4.46) follow immediately from the basic assumption.
Also, by using Eq. (4.42) and the fact that

2 r2r+5=(1+7)+4>4, —00 < T < +00 (4.52)
one concludes that 101 )
2 + T

e S A 4.53

v T2 4+ 2745 ( )

Moreover, because sin(f/2) = £1 if cos(8/2) = 0, with the aid of Eqgs. (4.43) and (4.46),

Eq. (4.10) implies that

v(3+T)

2(1+17)
Next assume Eq. (4.50). Because 3 + 7 > 0 (which follows from the assumption

7 > v?), Egs. (4.50) and (4.54) imply that

p(Qv,7,0)) = (4.54)

4(1471)2

2

= 4.55

SERNEEESE (4.55)
Eliminating v? from Eqgs. (4.53) and (4.55) and using the basic assumption Eq. (2.4) (which
is consistent with the current assumption 7 > v?), one has

P42l r—4=(r—-1D)(*+374+4) =0 (4.56)

Eq. (4.56) coupled with Eq. (4.40) implies that 7 = 1. In turn, by using either Eq. (4.53)
or Eq. (4.55), one has v? = 1 as a result of 7 = 1. Because Eq. (4.43) (i.e., cos(0/2) = 0) is
a result of the basic assumption, it has been shown that Eq. (4.51) follows from the basic
assumption and Eq. (4.50).

Conversely, with the aid of (i) Theorem 1, and (ii) Egs. (2.8) and (3.5), it can be
shown by direct substitution that both the basic assumption and Eq. (4.50) are valid for
the special case Eq. (4.51). Thus the proof is completed. QED.

Next we have Theorem 16.

Theorem 16. A given (v, 7) satisfies Eq. (4.2) and yet is ¢-7 unstable if and only if
r=v2=1.

Proof. Theorems 6 and 12 imply that Eq. (4.41) is a result of Eq. (4.2). Thus,
according to Theorems 5 and 15, 7 = v? = 1 if (v, 7) satisfies Eq. (4.2) and is also c-7
unstable.

Conversely, Theorem 6 coupled with Eqs. (4.16), (4.18), and (4.23) implies that any
(v, 7) with 7 = 12 = 1 satisfies Eq. (4.2). Moreover, according to Theorems 3, 14 and 15,
such a (v, 7) is also ¢-7 unstable. Thus the proof is completed. QED.

At this juncture, note that Theorems 14 and 15 state that, for the special case
Eq. (4.51), Q(v,1,0) is defective with p(Q(v,7,0)) = 1. Thus, according to a com-
ment made following Eq. (3.16), for this special case, the magnitude of any element in
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[Q(v, 7,0)]™ will grow not faster than linearly with m. Because round-off errors associated
with a modern computer are in the order of 10710 or less, the instability associated with
this special case generally is very mild and may not be detected even after billions of time
steps have elapsed.

Next, by combining Theorems 6, 12 and 16, one arrives at Theorem 17.

Theorem 17. A given (v, 7) which does not satisfy Eq. (4.41) is ¢-7 unstable. On
the other hand, a given (v, 7) which satisfies Eq. (4.41) is ¢-7 stable if and only if (i) it
satisfies Egs. (4.25)—(4.27); and (ii) it does not belong to the special case T = v? = 1.

Compared to those given in Theorem 3, the necessary and sufficient stability conditions
given in Theorem 17 are much more explicit and easier to handle. As such, this theorem
will be used repeatedly in the rest of the development. In particular, it will be used to
establish Theorem 18.

Theorem 18. The c¢-7 scheme is stable for any one of the following special cases: (a)
v=0and 7>0;(b) v’ =1and 7> 1;and (c) 0 < v?> < 1 and 7 = |v|.

Proof. Let 0 < s < 1 throughout this proof. Then, with the aid of Eqs. (4.16), (4.18),
(4.23), and (4.24), for case (a) v =0 and 7 > 0, one has

D(v,7,8) = D(0,7,s)=2[1+7s)*+1] >4 (4.57)

F(v,7,5)=F(0,7,5) =7(2—5)(2+715) >0 (4.58)
and

H(v,7,8) = H(0,7,5) = 45°7%(2 + 75)* > 0 (4.59)

Because v = £1 if v? = 1, for case (b) ¥ =1 and 7 > 1, one has

D(v,7,s) = D(£1,7,5) = (1 —7)%s +4(1 —s5) > 0 (4.60)
F(v,1,8) = F(£1,7,8) = (1 = 7)?s + 4(1 —5) > 0 (4.61)

and
H(v,7,8)=H(+l,7,5) =0 (4.62)

Because 0 < v? < 1 and 7 = |v| if and only if v = £7 and 0 < 7 < 1, for case (c)
0 <v?<1andT=|v|, one has

D(v,7,8) = D(£7,7,8) =7(1 = 7)(8 + 57 — 7%)s + 4(1 — 75) > 0 (4.63)
F(v,7,8)=F(xr,7,8) =7(1 = 7) (1 + 7+ 2)s +47(1 — 5) > 0 (4.64)

and
H(v,7,8) = H(£T,7,5) = 167%(1 — 7)%(1 — 7)s* > 0 (4.65)
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Obviously cases (a) and (b) are special cases of the more general case defined by
Eq. (4.41). Moreover, because v? < |v] if 0 < v? < 1, case (c) is also a special case of the
more general case. In addition, none of cases (a)—(c) contains the special case 7 = v? = 1.
With the aid of these observations and Eqs. (4.57)—(4.65), Theorem 18 follows directly
from Theorem 17. QED.

Next let
p def {(v,1)|0 < v? < 1,7 >v? and 72 # 1*} (4.66)
U_ Y w,0<?<1,7>1%and 72 < 2} (4.67)
and .
U, e {(v,")|0 < v? < 1,7 >v? and 72 > 1/*} (4.68)

Then ¥_ and ¥, are disjoint, and
UV=v,uvw_ (4.69)

Moreover, we have Theorems 19 and 20.

Theorem 19. Excluding the four special cases addressed in Theorems 16 and 18,
U is the set of all other (v, 7) that satisfy the necessary stability conditions 7 > v? and
v? <1 given in Theorem 12.

Proof. Note that (i) 7 = |v| > 2 if 0 < v? < 1 and 7 = |v|; (ii) 72 =2 if 7 = |v],
(iii) 7 = |v| if 7 > v? and 72 = 12, and (iv) 7 = 72 = 1?2 implies either 72 = v? = 0
or 72 = v? = 1. Ttems (i)—(iii) imply that 0 < v?> < 1 and 7 = |v| (which is case (c) in
Theorem 18) if and only if 0 < v? < 1, 7 > v, and 72 = 2. On the other hand, item (iv)
implies that the case with both 0 < v? < 1 and 7 = 72 = v? does not exist. The proof
follows from the above two observations and the facts that (i) 7 > v? = 0 if and only if
v=0and 7 >0, and (ii) 7 > v* = 1 if and only if either (a) 7 =v? =1 or (b) v?> = 1 and
7> 1. QED.

Theorem 20. Eq. (4.68) is equivalent to

e ={(n)0<v’<1,7>vand 7° > 1%} (4.70)

Proof. Note that (i) v* > 2 if 7 = 2 and 72 > 2, and (ii) the relations v* > % and
0 < v? < 1 are contradictory. Thus the case with 0 < v? < 1, 7 = 2, and 72 > 2 does
not exist, i.e., Eq. (4.68) is equivalent to Eq. (4.70). QED.

To proceed, we will establish Theorems 21 and 22.
Theorem 21. Let (v,7) € U. Then

D(v,7,s) >0, 0<s<1 (4.71)
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Proof. As a preliminary, note that Eq. (4.33) implies that

232\ 21— 1) (WA +12+2)
2 2
D(v,1,1) = (2 —v?) (T+ 2_V2) 22 ., vTF#E2 (4.72)
Thus
D(v,7,1)>0 if v* <1 (4.73)
Let (v,7) € U_. Then Eqgs. (4.16) and (4.67) imply that
2D
{W} — 41— ) (12— 1?) <0 (v,7) € T_) (4.74)
s v, T

i.e., for any given (v,7) € W_, the relation between the function D(v, 7, s) and s is repre-
sented by a curve which is concave downward on the s-D plane. Thus

Orgnsigl D(v,7,s) = min{D(v,7,0),D(v,7,1)} ((v,7) € W_) (4.75)

By using Eqgs. (4.32) and (4.73), Eq. (4.75) implies that
D(v,,s) >0, 0<s<1 (v, 7)€ U_) (4.76)
Next let (v,7) € U,. Then, by using Eq. (4.68) (in particular the facts that v? < 1
and (1 —v?)(7? — 1) > 0), Eq. (4.16) implies that

D(v,7,8) >[4+ (1 =67 = 3)v%| s+ 4 > [4rv* + (77 — 67 — 3)v°] s + 4
(4.77)
=(1—7)%%s+4(1 —v?s) > 0, 0<s<1 ((v,7) € Uy)

It has been shown that D(v,7,s) > 0, 0 < s < 1, for both case (a) (v,7) € ¥_ and
case (b) (v,7) € ¥ . Because ¥ = W_ U V¥, the proof is completed. QED.

Theorem 22. Let (v,7) € W. Then

F(v,7,s) >0, 0<s<1 (4.78)

Proof. Let (v,7) € ¥,. Then Egs. (4.18) and (4.68) imply that

|:62F(1/, T,S)

952 LT =2(1- y2)(]/2 _ 72) <0 ((v,7) € ¥y) (4.79)

i.e., for any given (v,7) € W, the relation between the function F(v,7,s) and s is repre-
sented by a curve which is concave downward on the s-F' plane. Thus

Orgnsigl F(v,7,s) = min{F(v,7,0), F(v,7,1)} ((v,7) € Uy) (4.80)
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By using Eqgs. (4.34), (4.35) and (4.70), Eq. (4.80) implies that
F(v,7,s) >0, 0<s<1 (v, 1) € Uy) (4.81)

Next let (v,7) € W_. Then, by using Eq. (4.67) (in particular the facts that (1 —
v)) (2 —=712)>0and 0 < 7 < |v| < 1), Eq. (4.18) implies that

OF (v,1,s)
0s

| —20-07 = - r -+ 54707

<21 -7 = 7°) = 2r(1—7) + 3+ 7°)7] (4.82)
=-2(1— y2)7'2 — ot 2r(1—7)—(1+ 7'2)1/2 <0,
0<s<1 ((v,7) € W_)

Thus, for any given (v,7) € U_, the relation between F' and s is represented by a curve
on the s-F plane which has a negative slope in the interval 0 < s < 1. In turn, this fact
coupled with Egs. (4.35) and (4.67) implies that

F(v,7,s) > F(v,7,1) >0, 0<s<1 (v, 7)€ W_) (4.83)
It has been shown that F(v,7,s) > 0, 0 < s < 1, for both case (a) (v,7) € ¥, and

case (b) (v,7) € ¥_. Because ¥ = W_ U ¥, the proof is completed. QED.

According to Theorems 21 and 22, Eqs. (4.25) and (4.27) are satisfied by all (v, 7) € .
Thus, Theorem 17 implies that a given (v,7) € W is ¢-7 stable if and only if it satisfies
Eq. (4.26). Thus, with the aid of Eqgs. (4.23) and (4.66), one arrives at Theorem 23.

Theorem 23. For any given (v, 7) € U, Eq. (4.26) is equivalent to

: S .
035121 G(v,7,5) >0 (4.84)

where the expression on the left side of the sign “>" denotes the infimum (i.e., the greatest
lower bound) of G(v,7,s) in the interval 0 < s < 1. As such, a given (v,7) € ¥ is ¢-7
stable if and only if it satisfies Eq. (4.84).

Because of Theorem 23, in the following we shall focus on finding those (v,7) € ¥ that
satisfy Eq. (4.84).

To proceed, first we will establish Theorem 24.
Theorem 24. For any given (v,7) € VU, let

(v, 7) def V272 + (4 — 60%)T — 302
So(v,T) =
2(1 = v2)(v? — 12)

(4.85)
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Let s,(v,T) be abbreviated as s,. Then
G(v,1,8,) if0<s,<1

: _ s .
OérSn;lG(y, T,8) Gv,1,1) ifs,>1 (4.86)

G(v,71,0) ifs, <0

Proof. To facilitate the proof, the domain of the function G defined in Eq. (4.24)
will be extended to —oo < s < 400. As such, for any given (v,7) € ¥ and any s with
—00 < 8§ < 400, one has

{%} vr =201 = v?)(7? = v*)? [5 — so(v, 7)] (4.87)
and 26

Thus, for any given (v,7) € ¥, (i) the relation between the function G(v,7,s) and s is
represented by a curve which is concave upward on the s-G plane, and thus the absolute
minimum of G in the interval —oco < s < +o0 occurs at where 9G/0s = 0, i.e.,

s = 8o(v,T) (4.89)

(ii) G is strictly monotonically decreasing in the interval s < 1 if s, > 1; and (iii) G is
strictly monotonically increasing in the interval s > 0 if s, < 0. In addition, for any given
(v, T), because G is a continuous function of s in the interval —oo < s < 400, one also has
(iv)
h%l+ G(v,1,s5)=G(v,T,0) (4.90)
s—

Eq. (4.86) is a direct result of (i)—(vi). QED.

With the aid of Theorem 24, the bulk of the remaider of the paper will be devoted to
answer a key question, i.e., given any v with 0 < v? < 1 (which is required by the condition
(v,7) € W), what is the range of 7 that will satisfy Eq. (4.84) and the rest of the condition
(v,7) € ¥ (ie., 7 >1v? and 72 # 1?)?

To proceed, let

det 3¢ — 2+ 2302 — 3z + 1

Iy () .

0<z<l1 (4.91)

and (iii)
d£f3:13—2:i: 2(x3 —x 4+ 2)
N 2—x

Ji(x) ) 0<zx<l1 (4.92)
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Hereafter, for any function f(x), as usual \/ f(z) denotes the principal square root of f(z).
As such \/f(z) > 0if f(x) > 0. Given Egs. (4.91) and (4.92), one can establish Theorem
25.

Theorem 25. In the domain 0 < x < 1, we have

Ii(x)>0 0<z<1) (4.93)
I_(x)<0 0<z<1) (4.94)
Ji(x) >0 0<x<1) (4.95)
and
J_(x) <0 0<x<1) (4.96)
Proof. Because

4(3z* — 3z + 1) = (3z — 2)? + 322 (4.97)

one has
2322 =3z +1 > |3z — 2|, x#0 (4.98)

Egs. (4.93) and (4.94) follow directly from Egs. (4.91) and (4.98).
Next because

2(x® — x4+ 2) = 3z — 2)% + 2z(x — 2) (x— g) (4.99)
one has
V2(x3 —x+2) > |3z — 2|, O<z<2 (4.100)

Egs. (4.95) and (4.96) follow directly from Egs. (4.92) and (4.100). QED.

With the above preparations and the understanding that hereafter the symbol “<”
may be used to take the place of the statement “if and only if”, Theorem 26 can now be
presented.

Theorem 26. (A) For any (v,7) € ¥_, we have

(>0 & 71>1.(7)
So(, )X =0 & 71=1I1,.(% ((v,7) € W) (4.101)

(<0 & 7<Ii(v?)

and
(>1 & 7> J.(07)

so(r, )¢ =1 & 7=J,.(? (v, 7)€ U_) (4.102)

(<1 < T < J+(V2)
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On the other hand, (B) for any (v,7) € ¥, we have

>0 & T<I. (V7
S$o(r,T) =0 & 1=1,(v? ((v,7) € Uy) (4.103)

<0 & 7>1,.(?

and
>1 & 7<J.(v?)

so(r, )¢ =1 & 71=J,.(? ((v,7) € Uy) (4.104)
<1l & 7>J,.(v?
Proof. As a preliminary, note that
i+ (-6 =37 =2 [r = 1 (vV?)] [t — I-(v?)] (0<v?<1) (4.105)
In addition, because 7 > v? and 0 < v? < 1 if (v,7) € ¥, Eq. (4.94) implies that
T—1_(v*) >0, (v,7) eV (4.106)

Because the expression on the left side of Eq. (4.105) is the numerator of the fraction
on the right side of Eq. (4.85), Eq. (4.101) now follows from Egs. (4.85), (4.105) and
(4.106), and the fact that 0 < v? < 1, and v* — 72 > 0if (v,7) € V_.

To prove Eq. (4.102), note that Eq. (4.85) implies that, for any (v,7) € ¥,

(2 —v2)712 + (4 —60%)7 — 2 (5 — 21?%)
2(1 —v?)(v? —712)

So(v,7) — 1= (4.107)

Also one has

=)+ d-6) T =15 -2%) =21 [t - JL (V)] [t - J-(v?)] (0<v® <)
(4.108)
In addition, because 7 > v? and 0 < v? < 1 if (v,7) € ¥, Eq. (4.96) implies that

T—J_(v*) >0, (v,7) €W (4.109)

Because the expression on the left side of Eq. (4.108) is the numerator of the fraction
on the right side of Eq. (4.107), Eq. (4.102) now follows from Eqs. (4.107)—(4.109), and
the fact that 0 < v?> < 1 and v? — 72 > 0if (v,7) € U_.

This finishes the proof of part A. Part B can be proved using a line of logic identical
to that used to prove part A. The only difference that sets part B apart from part A is
that v — 72 < 0 for the case (v, 7) € ¥ while v? — 72 > 0 for the case (v,7) € V_. QED.
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Next, note that Eq. (4.24) yields
Gv,7,1)= (1 =v*)?[(247)* = V]

and
G(v,7,0) =47 [V*7% + (1 — v*)1 — 1]
In addition, for any (v, 7) € ¥, Egs. (4.24) and (4.85) also yield

v3(1+71)2 [1/27'2 +2(v% —4)T + 9V2]
4(1 — v?)

G(v,1,8,) = —

An immediate result of Egs. (4.66) and (4.110) is Theorem 27.

Theorem 27. For any (v, 7) € U, we have
G(v,1,1) >0 ((v,7) € V)

Next let

(1£fl'—1:i:\/1—2x+5x2

K(z) 2x

0<z<xl

Then one has Theorems 28 and 29.

Theorem 28. In the domain 0 < z < 1, we have
K (x)>0 0<z<l)

and
K_(x) <0 0<z<1)

Proof. Because
1 -2z + 52 = (z — 1) + 42?

V1—=2z+5x2>|z—1|, x#0

Egs. (4.115) and (4.116) follow directly from Eqs. (4.114) and (4.118). QED.

one has

Theorem 29. For any (v,7) € ¥, we have

Gv, 7,00 >0 < 7>K,1? ((v,7) € U)

Proof. Note that

4T [y272 + (1 —vH)T — V2] = 471/° [7‘ — K+(y2)} [T - K_(y2)} ., 0<1i<«1
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In addition, because 7 > v? and 0 < v? < 1 if (v,7) € ¥, Eq. (4.116) implies that
T—K_(v*) >0, (v, 7)€V (4.121)

Eq. (4.119) now follows from Egs. (4.111), (4.120) and (4.121), and the fact that 7 > v/?
and 0 < v? < 1if (v,7) € ¥. QED.

Next let
def 4 — 1 £24/2(2 — 1 — 2?)

Ly(x) - ) 0<z<l1 (4.122)

Then one has Theorems 30 and 31.

Theorem 30. In the domain 0 < x < 1, we have

Li(x)>L_(x)>0 0<z<1) (4.123)

Proof. Note that (i)
2—z—2°=—(z+2)(x—1) >0, —2<x<1 (4.124)
and (ii)
(4— )2 — [2 2(2—x—x2)]2:9x2 >0, x40 (4.125)
Thus
d—z=|4—z|>2/2Q@-2-22)>0, O<z<lor —2<z<0 (4.126)

Eq. (4.123) is a result of Egs. (4.122) and (4.126). QED.

Theorem 31. For any (v,7) € ¥, we have

G, 7,8,) >0 < L_(vV)<7<L (V%) (v, 1) € V) (4.127)

Proof. Note that
V42002 — ) r+ 0P =02 [r — Ly (V%) [ — L_(v?)] 0<v?<1) (4.128)

Because 1 +7 > 0, v > 0, and 1 —v? > 0 if (v,7) € ¥, Egs. (4.112) and (4.128) imply
that

G, 7,8,) >0 & [r—Ly(W?)][r—L-(v*)] <0 ((v,7)€ V) (4.129)
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if (v,7) € ¥. Because 0 < v < 1if (v,7) € ¥, Eq. (4.127) now follows from Eq. (4.129)
and a result of Eq. (4.123), i.e.,

[T —L-()] > [T =L (v?)], 0<v* <1 (4.130)

QED.
With the above preliminaries, one can establish Theorem 32.

Theorem 32. (A) Let (v,7) € U_. Then (v, 7) is ¢-7 stable if and only if it satisfies
one of the three mutually exclusive sets of conditions specified, respectively, in Eqs. (4.131)—
(4.133):

7> JL () (4.131)
K, (v*) <1 <I (v (4.132)

and
I,(V) <7< Ji(v?) and L_(v*) <7< Ly (4.133)

(B) Let (v,7) € ¥,. Then (v,7) is c-7 stable if and only if it satisfies one of the three
mutually exclusive sets of conditions specified, respectively, in Eqgs. (4.134)—(4.136):

< Jy (V?) (4.134)
r>1,(v") and 71> K, (V%) (4.135)

and
Jo(v?) <1t <I,(v*) and L_(v*) <7< Li(v?) (4.136)

Proof. Let

U (v, 1) € T and so(v, ) > 1} (4.137)
o E 0 ) (v, 1) € U_ and s,(v, 7) < 0} (4.138)
g0 {(v,7)|(v,7) € U_ and 0 < s,(v,7) < 1} (4.139)
v L )| (v, 7) € U and so(v, ) > 1} (4.140)
v L0 (v, 7) € Uy and s,(v,7) < 0} (4.141)

and
\IIS?) Lef (v, 7)|(v,7) € Uy and 0 < s,(v,7) < 1} (4.142)

Because W_ and ¥, are mutually exclusive, the above definitions imply that (i) \I!(_O‘),
v g \Ifgf‘), \Ifgf), and ‘Ifgj) are mutually exclusive; (ii)

v_=0Yur?®ygt (4.143)
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and (iii)
v, =v@ue?uel (4.144)
Moreover, by using Theorem 26, Eqgs. (4.137)—(4.142) imply

U = {(w,7)|(v,7) € U_ and T > J, (%)} (4.145)
g = {(v,7)|(v,7) € ¥_ and 7 < I, (v*)} (4.146)
v = (v, 7)|(v,7) € U_ and I (1?) < 7 < J.(1?)} (4.147)
U — {(v,7)|(v,7) € Uy and T < J (17)} (4.148)
v — {(,7)|(v,7) € Uy and 7 > I, (1?)} (4.149)
and
v = {(v,7)|(v,7) € Uy and J, (1) < T < I, (%)} (4.150)
respectively.

To proceed, note that:
(a) With the aid of (i) Egs. (4.137) and (4.140), and (ii) Theorems 24 and 27, Theorem

23 implies that a given (v, 7) € VASAY qfﬁ” is always c-7 stable.
(b) With the aid of (i) Egs. (4.138) and (4.141), and (ii) Theorems 24 and 29, Theorem
23 implies that a given (v, 7) € VACAY \I!Srm is c-1 stable if and only if

7> K (V%) (4.151)

(c) With the aid of (i) Egs. (4.139) and (4.142), and (ii) Theorems 24 and 31, Theorem
23 implies that a given (v, 7) € vy \If(ﬁ) is ¢-7 stable if and only if

L (V) <7< Ly (4.152)
Theorem 32 now follows from Eqs. (4.143)—(4.150) and the facts presented in the above
items (a)—(c). QED.

In principle, the question of whether a given (v, 7) is ¢-7 stable can now be answered
by using Theorems 12, 16, 18, 19, and 32. However, in its current complicated form,
Theorem 32 is difficult to use. Fortunately, Theorem 32 can be simplified greatly and, in
fact, the stability condition for the c-7 scheme can be cast into a rather simple explicit
form. To obtain this simple form, we begin with Theorem 33.

Theorem 33. We have: (A)

(r,T)eV_ & O0<rvi<landr? <7< V2 (4.153)
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(B) ¥_ is not empty; and (C)

(v,7)eEV, & 0<v?®<landrt> V12 (4.154)

Proof. Because (i) —vv2 < 17 < V12 if 72 < 12, and (ii) 72 < 12 if 0 < 7 < V12, part
A is an immediate result of Eq. (4.67). Part B follows from the trivial fact that v? < V12
if 0 < v? < 1. To prove part C, note that (i) 7 > 0 if 2 > 0 and 7 > v?, and (i) 7 > V12
if 7 > 0 and 72 > v2. Thus Eq. (4.70) implies that 0 < v?> < 1 and 7 > V22 if (v, 7) € ¥ .
Conversely, because (i) V22 > 12 if 0 < v? < 1; (ii) 7 > v if 7 > V22 and V2 > v,
and (iii) 72 > v? if 7 > V12, one concludes that (v,7) € U, if 0 < 2 < 1 and 7 > V2.
QED.

Next let ,
o ¥3-2/2 (4.155)
e ¥ 3/11 (4.156)
s (41— 7v/33)/2 (4.157)
and
} T

def 1664 181 1664 181 2
= —+=] - (V=== -3 4.158
“ ( 27+27> ( 27 27) 3 (4.158)

We have (i) ¢; ~ 0.172, ¢5 = 0.273, ¢3 ~ 0.394 and ¢4 =~ 0.530, and (ii)
O0<cp<ec<ecg<e<l1 (4.159)

With the above preparations, we have Theorem 34.

Theorem 34. (A) In the domain 0 < z < 1, I (x), Jy(x), K4 (z), and L_(x) are
strictly monotonically increasing while L (z) is strictly monotonically decreasing; (B) we
have

I.(z) <z < Ki(x) < L_(x) < Jy(z) < Vo < Ly(), 0<z<c (4.160)
ILi(z)=2< K (z) < L_(z) < Jy(x) < o < Li(x), T =c (4.161)
r<Iy(z)< K. (z)<L_(x) < Jy(z) < Vo< Li(x), 1 <T<co (4.162)
v <Ii(z)=Ki(z)=L_(2) < Jo(z) < Vo < Ly(z), a=cs (4.163)
r< Ky(z)<L_(z) <Ii(x)<Jy(z)<r<Li(x), o <z <cs (4.164)
r< K (x)<L_(z)<Iy(z)=Jy(z)=+zx < Li(x), T =cs3 (4.165)
r< K. (z)<L_(z) <V <Ji(x)<Il(x)<Ly(z), c3<x<cy (4.166)
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r< K (x)<L_(z)=vz<J(v) <I(v)<Li(x), T=cy (4.167)

and
< Ky(z) < Vo <L_(z)<Ji(z) <Ii(x)<Ly(z), ca <x <1 (4.168)
(©)
K, (c3) = L'_(c3) = 121/90 (4.169)
where K/, (z) & dK, (z)/dz and L' (z) & dL_(x)/dz; and (D)
lim L_(z)=0 and lim Ky(z)=1 (4.170)

In order not to interrupt the current stream of development, the lengthy proof for
Theorem 34 will be provided later in the paper. Here, with the aid of this theorem, we
shall establish a simplified form of the stability condition for the c-7 scheme as given in
Theorem 35.

Theorem 35. Let
(0 if =0
L_(z) if O0<ax<3/11

To(x) = (4.171)
Ki(z) if 3/11<z<1

(1 if r=1
I, def {(v,")|V? < 1,7 > 71,(V*) and (v2,7) # (1,1)} (4.172)
and
& {(v,")|v? <1 and 7 > 7,(v*)} (4.173)

Then: (A) 7,(x) is continuous at x = 0 and z = 1; (B) 7,(z) is consistently defined at
x =3/11; (C)

lim 7.(z)= lim 7)(z)=121/90 (4.174)
m—>%7 x—>%+
where 7/ (x) e dro(x)/dx; (D) 7,(z) is strictly monotonically increasing in the interval
0<z<1;(E)
T < To(z) < Vz, 0<z<1 (4.175)

(F) a given (v,7) is -7 stable if and only if (v,7) € T',; and (G) a given (v, 7) satisfies
Eq. (4.2) if and only if (v,7) € T

Proof. Part A is a result of Egs. (4.170) and (4.171). Part B follows from the fact
that L_(3/11) = K (3/11) = 1/3. Part C follows from Eqgs. (4.156) and (4.169). Part D
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is a result of part A of Theorem 34, and parts B and C of the current theorem. Part E is
a result of Eqs. (4.160)—(4.168) and (4.171).

To prove part F, one needs to show that: (i) (v,7) € T', for any (v,7) that is c-7
stable; and (ii) (v,7) ¢ T', for any (v, 7) that is ¢-7 unstable. Here whether any particular
(v,7) is ¢-7 stable is determined using Theorems 12, 16, 18, 19, and 35.

To proceed, let

o i) >1orr <P <1} (4.176)
O ¥, 1) r =12 =1} (4.177)

Dy {(v,7)|v* =0 and T > 0} (4.178)
o, ¥, )2 =1and T > 1} (4.179)
o5 {(v,7)|0<v* < 1and 7= |v|} (4.180)

With the aid Theorem 19, it is seen that W_, W, and the five sets defined above are
inclusive and yet mutually exclusive, i.e., any (v, 7) belongs to one and only one of these
sets. To facilitate the proof, ¥_ and W, , respectively, will be further divided into several
disjoint subsets to be defined immediately.

Let

g {(r,7)|0<1? < ¢pand v? < 7 < V12} (4.181)
v E L, )2 = ¢z and v? < 7 < Vi?) (4.182)
U E (1, 7)e; < v < ey and v? < 7 < Vi2) (4.183)
and
g {(v,7)|es <v? <1and v? <7< Vi?} (4.184)

Because (v,7) € ¥_ & 0 < v? <1 and v? < 7 < V12 (see Theorem 33), one concludes
that (i) \If(_é), ¢=1,2,3,4, are nonempty disjoint subsets of ¥_, and (ii)

U =uUi ot (4.185)

Next let .
\I!Srl) e {(v,7)|0 < v* < ¢3 and T > Vi2} (4.186)

and ,
\If(f) e (v,7)|es < v* <1 and 7 > Vi2} (4.187)

Because (v,7) € ¥, < 0 < v? <1 and 7 > V2 (see Theorem 33), one concludes that (i)
\Ifgrl) and \Il(f), are nonempty disjoint subsets of W, , and (ii)

v, =vPue? (4.188)
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From the above discussion, the sets (i) ®¢, £ = 1,2,3,4,5; (ii) \If(_é), ¢ =1,2,3,4; and

(iii) \If(+1) and \If(f), are inclusive and yet mutually exclusive, i.e., any (v, 7) must belong to
one and only one of these sets. Part F will be proved by showing that it is valid over each
of these sets in the following case-by-case discussions:

1.

(v,7) € ®;. According to Theorem 12, any (v,7) € ®; is ¢-7 unstable. Thus part F
is true over ®; if one can show that (v,7) ¢ T, if (v,7) € ®;. Because (v,7) ¢ T,
if 2 > 1 (see Eq. (4.172)), the proof for case 1 is completed if one can show that
(v,7) ¢ T, if T <v? < 1.

To proceed, note that Eq. (4.175) and the facts that 7,(0) = 0 and 7,(1) = 1 imply
that

v < 1,(v?), v <1 (4.189)

Thus 7 < 7,(¥?) if 7 < v? < 1. As a result of Eq. (4.172), this in turn implies that
(v,7) ¢ T, if 7 <v? < 1. As such part F is true over ®;.

. (v, 7) € ®3. According to Theorem 16, any (v, 7) € P2 is -7 unstable. Also, according

to Eq. (4.172), (v,7) ¢ T, if (v, 7) € ®2. Thus part F is true over ®,.

(v,7) € ®3. According to Theorem 18, any (v, 7) € @3 is c-7 stable. Because 7,(0) = 0,
Eq. (4.172) implies that (v,7) € T, if (v,7) € ®3. Thus part F is true over ®@s.

)
q. (
(v,7) € ®4. According to Theorem 18, any (v, 7) € @4 is ¢-7 stable. Because 7,(1) = 1,
Eq. (4.172) implies that (v,7) € T, if (v,7) € ®4. Thus part F is true over ®y.

)

(v,7) € ®5. According to Theorem 18, any (v,7) € ®5 is ¢-7 stable. On the other
hand, Eqs. (4.175) implies that
To(V?) < V12, 0<vi<l (4.190)

ie., To(v?) < V2 = |v] if 0 < v? < 1. This coupled with Eq. (4.172) implies that
(v,7)el, if (v,7) € ®5. Thus part F is true over ®5.

. (nT) € ¥ For this case, we have (i) 0 < v? < ¢, and (ii) v? < 7 < V2. To

proceed, Note that Eqgs. (4.160)—(4.162) imply that

I, (V) < Ky (v%), 0<v?< ey (4.191)
v: < L_(v?) < Jy (v?) < V2, 0<v?<e (4.192)

and
I (v®) < L_(v*) < J4 (v?) < Ly (v?), 0<1?< e (4.193)

Because Eq. (4.191) contradicts Eq. (4.132), Eq. (4.132) cannot be satisfied by any
(v,7) € g, Moreover, by using Eq. (4.192), it can be shown that
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where \If(_l’l), \If(_l’Q), and \If(_l’s) are nonempty disjoint sets defined by
WD o )]0 < 1P < ey and V¥ <7 < Lo (V7)) (4.195)
T )0 < v? <oy and L (v2) <7< T4 (17)} (4.196)
and det
P E (1, 7)]0 < 12 <z and Jy (1) < T < Vi) (4.197)

Thus any (v, 7) € U must fall into one and only one of the following three sub-cases:
() (v,7) € ¥V Gi) (v, 1) € B and (i) (v, 1) € TP,

Let (v,7) € g By using the relation L_(v?) < Jy(v?) which follows from
Eq. (4.192) or Eq. (4.193), it is seen that Eq. (4.131) cannot be true for the current
sub-case where v? < 7 < L_(v?). Also, the second part of Eq. (4.133), i.e., L_(v?) <
7 < Ly (v?), cannot be true for the sub-case. Moreover, for a reason given earlier,
Eq. (4.132) also cannot be true for the sub-case. According to part A of Theorem 32,

the above results imply that any (v, 7) € \119’1) is ¢-7 unstable. On the other hand,
because 7,(v?) = L_(v?) if 0 < v? < ¢y (see Egs. (4.156) and (4.171)), one concludes

that 7 < 7,(v?) and thus (v,7) ¢ T, if (v,7) € ¥ Ag such it has been shown that
part F is true over \If(_l’l).

Let (v,7) € 71?1t follows from Eq. (4.193) that Eq. (4.133) is satisfied by any
(v, 7) with L_(v?) < 7 < J,(v?). According to part A of Theorem 32 and Eq. (4.196),
this implies that any (v, 7) in the current sub-case is c-7 stable. On the other hand,
because 7,(v?) = L_(v?) if 0 < v? < ¢y, one concludes that 7 > 7,(v?) and thus

(v,7) € Ty if (v,7) € w2 As such, it has been shown that part F is true over
v,

Let (v,7) € g, Obviously Eq. (4.131) is true for the current sub-case where
Jy(v?) < 7 < V2. According to part A of Theorem 32, this implies that any (v, 7)
in the current sub-case is c-7 stable. On the other hand, because (i) 7,(v?) = L_(v?)
if 0 < 12 < ¢g, and (ii) the relation L_(v?) < J,(v?) is a part of Eq. (4.193), one
concludes that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € U1 As such, it has been

shown that part F is true over \11(7173).
It has been shown that part F is true over each of the three nonempty disjoint sets

\If(_l’l), \If(_l’Q), and WP Eq. (4.194) now implies that part F is true over o,

7. (v,7) € U2, For this case, we have (i) v2 = ¢, and (ii) 2 < 7 < V2. To proceed,
Note that Eqgs. (4.163) implies that

V<, () =K. (V) =L_(V*) < J.(v*) < V2 < L, (v?), vi=cy (4.198)
With the aid of Eq. (4.198), it can be shown that

\I](_2) — \I](_271) U \I](_272) U \I[(_Qfg) U \I;(_274) (4199)
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where \If(_2’1), \If(_Q’Q), \If(_2’3), and \If(_2’4) are nonempty disjoint sets defined by
g def (v, T)[V? = cy and v? < 7 < L_(v?)} (4.200)
vED LA, 7)? = oy and 7 = L_(1*)} (4.201)
g (23) def {(v,")|V? = cy and L_(v*) < 1 < JL(v*)} (4.202)
and ;
vV E (v, 7)p? = cp and T4 (v?) < 7 < Vo2 (4.203)

Thus any (v, 7) € 7@ must fall into one and only one of the following four sub-cases:
() (v,7) € T2V i) (v, 7) € U2 (i) (v, 7) € U3 and (iv) (v, 7) € TP,

Let (v,7) € ¥ By using the relation L_(v?) < Jy(v?) which follows from
Eq. (4.198), it is seen that Eq. (4.131) cannot be true for the current sub-case where
v? <17 < L_(v?). Moreover, by using the relation I, (v?) = K (v?) = L_(v?) which
also follows from Eq. (4.198), it is seen that Eq. (4.132) also cannot be true for the
sub-case. In addition, the second part of Eq. (4.133) also cannot be true for the sub-
case. According to part A of Theorem 32, this implies that any (v,7) € oY g er
unstable. On the other hand, because 7,(v?) = L_(v?) if v? = ca, one concludes that
T < 7o(v?) and thus (v,7) ¢ T, if (v,7) € Y As such it has been shown that part

F is true over \P@’l).

Let (v, 1) € 732, By using the relation I, (v?) = K, (v?) = L_(v?) which follows
from Eq. (4.198), it is seen that Eq. (4.132) is true for the current sub-case where

7= L_(v?). According to part A of Theorem 32, this implies that any (v, 7) € g2
is c-7 stable. On the other hand, because 7,(v?) = L_(v?) if v? = ¢, one concludes

that 7 = 7,(v?) and thus (v,7) € T, if (v, 7) € 2?2 As such it has been shown that
part F is true over \II(_Q’Q).

Let (v,7) € %%, By using the relation I, (v2) = L_(12) < J.(v?) < L. (v?)
which follows from Eq. (4.198), it is seen that Eq. (4.133) is true for the current case
where L_(v?) < 7 < Jy(v?). According to part A of Theorem 32, this implies that

any (v,7) € U is ¢ stable. On the other hand, because 7,(v2) = L_(v?) if
v? = ¢y, one concludes that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € v2¥ | As such
it has been shown that part F is true over @9’3).

Let (v,7) € gD, Obviously Eq. (4.131) is true for the current sub-case where

J(v?) <71 < V2. According to part A of Theorem 32, this implies that any (v, 7) in
the current sub-case is ¢-7 stable. On the other hand, because (i) 7,(v?) = L_(v?) if
v? = cg, and (ii) the relation L_(v?) < J, (v?) is a part of Eq. (4.198), one concludes

that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € 2% " As such, it has been shown
that part F is true over ‘I!(_2’4).
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It has been shown that part F is true over each of the four nonempty disjoint sets
\119’1), \P£2’2), \119’3), and ¥ Eq. (4.199) now implies that part F is true over @,

8. (v,7) € U3 For this case, we have (i) ca < v? < 3, and (ii) v* < 7 < V2. To
proceed, Note that Eqgs. (4.164) implies that

V<K (W) <L (W) <I (V)< J (V) <Vi2<Li(v?), c<v?®<cs
(4.204)
With the aid of Eq. (4.204), it can be shown that
v = gCV et gty gty (4.205)

where \I'(f”l), \11(5”2), \11(5”3), and \11(5”4) are nonempty disjoint sets defined by

D L (1, 7y < v? < 3 and v? <7 < Ky (1)} (4.206)
(3,2) def 2 2 2
U = {(v,7)|ea < v < ez and Ky (v°) <7 <I;(v°)} (4.207)
WY L r)en < 1? < es and L (V) < 7 < J1(1A)} (4.208)
and ;
Y L (0, 7)|er < 12 < c3 and JL(v?) <7 < Vi) (4.209)

Thus any (v,7) € 7® must fall into one and only one of the following four sub-cases:
() (v,7) € U3V (i) (v, 1) € T3 i) (v, 1) € Y and (iv) (v, 7) € BEY,
Let (v,7) € ¥V By using the relation K. (v?) < Jy(v?) which follows from

Eq. (4.204), it is seen that Eq. (4.131) cannot be true for the current sub-case where
v? <1 < K, (v?). Moreover, obviously Eq. (4.132) is also not true for the sub-case.
In addition, by using the relation K (v?) < L_(v?) < I (v?) which also follows from
Eq. (4.204), one concludes that Eq. (4.133) also can not be true for the sub-case.

According to part A of Theorem 32, the above results imply that any (v, 7) € gD

is c-7 unstable. On the other hand, because 7,(v?) = K, (v?) if ca < v? < c3, one
concludes that 7 < 7,(v?) and thus (v,7) ¢ T, if (v,7) € U3 As such it has been
shown that part F is true over \If(f”l).

Let (v,7) € g2, Obviously Eq. (4.132) is true for the current sub-case where
K. (v?) < 7 < I,(v?). According to part A of Theorem 32, this implies that any

(v,7) € %% ig -7 stable. On the other hand, because 7,(v2) = K (12) if ¢ < 12 <
c3, one concludes that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € 732 As such it
has been shown that part F is true over \11(5)”2).

Let (v, 1) € ¥3* By using the relation L_(v?) < I (v?) < Jo(v?) < Ly(v?)
which follows from Eq. (4.204), it is seen that Eq. (4.133) is true for the current case
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where I, (v?) < 7 < Jy(v?). According to part A of Theorem 32, this implies that
any (v,7) € U5 s 7 stable. On the other hand, because (i) 7o(v?) = K (v?)
if co < 12 < c3, and (ii) the relation K, (v?) < I, (v?) is a part of Eq. (4.204), one
concludes that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € U533 As such it has been
shown that part F is true over \If(_g’?’).

Let (v,7) € VISl Obviously Eq. (4.131) is true for the current sub-case where

Jy(v?) <7 < V2. According to part A of Theorem 32, this implies that any (v, 7)
in the current sub-case is c-7 stable. On the other hand, because (i) 7,(v?) = K (v?)
if ca < % < ¢3, and (ii) the relation K, (v?) < Jy(v?) is a part of Eq. (4.204), one
concludes that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € U3 Ag such, it has been

shown that part F is true over \I!(_?’A).
It has been shown that part F is true over each of the four nonempty disjoint sets

\If(f”l), \II(E”Q), \If(f”?’), and U3 Eq. (4.205) now implies that part F is true over o®),

9. (v,7) € U, For this case, we have (i) c5 < 12 < 1, and (ii) 2 < 7 < V2. To
proceed, Note that Eqgs. (4.165)—(4.168) implies that

V2 < KL (V) < V2 < JL(v?) < I (VP) < Lo (vV?), s <1<l (4.210)
With the aid of Eq. (4.210), it can be shown that
VA SN UR e (4.211)

where U4 and 4% are nonempty disjoint sets defined by

oD L r)es <% < 1and 12 <7 < Ky (V2)} (4.212)
and ;
g*2) & {(v,7)|es <v? <1and K, (v*) <7< Vi2} (4.213)

Thus any (v, T) € ™ must fall into one and only one of the following two sub-cases:
(i) (v,7) € oY and (ii) (v,7) € g2,

Let (v,7) € Y By using the relation K. (v?) < Jy(v?) < I (v?) which follows
from Eq. (4.210), it is seen that none of Eqs. (4.131)—(4.133) is true for the current
sub-case where v? < 7 < K, (v?). According to part A of Theorem 32, this implies

that any (v,7) € " is c-r unstable. On the other hand, because 7,(v2) = K, (1?)
if c3 < v? < 1, one concludes that 7 < 7,(v?) and thus (v,7) ¢ T, if (v,7) € gb,
As such it has been shown that part F is true over \I!(f’l).

Let (v,7) € v*? By using the relation K. (v?) < vv2 < I, (v?) which follows
from Eq. (4.210), it is seen that Eq. (4.132) is true for the current sub-case where
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K, (v?) < 7 < V2. According to part A of Theorem 32, this implies that any
(v,T) € U2 is c7 stable. On the other hand, because o(1V?) = K (v?) ife3 <12 <
1, one concludes that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € U2 As such it has
been shown that part F is true over \1,(7472).

It has been shown that part F is true over each of the two nonempty disjoint sets

oY and o2, Eq. (4.211) now implies that part F is true over o,

10. (v,7) € \I!Srl). For this case, we have (i) 0 < v? < ¢3, and (ii) 7 > Vv2. To proceed,
Note that Eqgs. (4.160)—(4.165) imply that

I, (V%) < V2, 0<v?<cs (4.214)

K, (V%) < V2, 0<v?<cy (4.215)
and

L_(v*) < V2, 0<v?<es (4.216)

By using Eqs. (4.214) and (4.215), one concludes that Eq. (4.135) is true for the current
case where 7 > V2. According to part B of Theorem 32, this implies that any (v, T)
in the current case is ¢-7 stable. On the other hand, because (i) 7,(v?) = L_(v?) if
0 < v? < e, and (ii) 7,(v?) = Ky (v?) if ca < v? < ¢3, Egs. (4.215) and (4.216) imply
that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € \If(+1). As such, it has been shown that
part F is true over \Ifgrl).

11. (v,7) € \Iff). For this case, we have (i) ¢3 < v? < 1, and (ii) 7 > V2. To proceed,
Note that Eqgs. (4.166)—(4.168) imply that

K (1) < V2 < J (V) < I, (VP), 3 <1 <1 (4.217)
and
L_(v*) < J (V) < I (v*) < Ly(v?), 3 <<l (4.218)

By using Eq. (4.217), one has
v — e e e (4.219)

where \I'f’l), \I!f’2), and \I!(f’?’) are nonempty disjoint sets defined by

\I!fvl) = (v, T)es < v? < 1and V2 <1 < Jp(V?)) (4.220)
(2,2) def 2 2 2
VoY = {(v,7)es <v® <land Jp(v7) <7 < I (v°)} (4.221)
and ;
W29 4 1, ey < v? < 1and 7 > I, (v%)) (4.222)
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Thus any (v, 7) € \Iff) must fall into one and only one of the following three sub-cases:
() (v,7) € WPV (i) (v,7) € WP and (iii) (v, 7) € WPP.

Let (v,7) € \I!f’l). Eq. (4.134) is true for any (v, 7) in the current sub-case where
V12 < 7 < Jp(v?). According to part B of Theorem 32, this implies that the any
(v,7) € \Iff’l) is c-1 stable. On the other hand, because (i) 7,(v?) = K, (v?) if
c5 < 7 < 1, and (ii) the relation K, (v?) < V2 is a part of Eq. (4.217), one concludes
that 7 > 7,(v?) and thus (v,7) € T, if (v, 7) € \If(f’l). As such it has been shown that
part F is true over \Ilf’l).

Let (v,7) € \Iff’Q). By using Eq. (4.218), one concludes that Eq. (4.136) is true
for the current case where J,(v?) < 7 < I, (v?). According to part B of Theorem
32, this implies that any (v, 7) € \I'f’2) is ¢-7 stable. On the other hand, because (i)
T.(1?) = Ky (v?) if c3 < v? < 1, and (ii) the relation K| (v?) < J4(v?) is a part of
Eq. (4.217), one concludes that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € \I!f’2). As
such it has been shown that part F is true over \Iff’z).

Let (v,7) € \Iff’g). By using the relation K (v?) < I;(v?) which follows from
Eq. (4.217), one concludes that Eq. (4.135) is true for the current sub-case where
7 > I, (v?). According to part B of Theorem 32, this implies that any (v, 7) € \If(f’?’)
is c-7 stable. On the other hand, because (i) 7,(v?) = K (v?) if e3 < 2 < 1, and (ii)
the relation K, (v?) < I (v?) is a part of Eq. (4.217), one concludes that 7 > 7,(?)

and thus (v,7) € T, if (v,7) € \I!f’?’). As such, it has been shown that part F is true
over \Ilf’?’).

It has been shown that part F is true over each of the three nonempty disjoint sets
\If(f’l), \1153’2), and \I!f’?’). Eq. (4.219) now implies that part F is true over \If(f).

It has been established that part F is true over each of the sets mentioned in the
paragraph immediately following Eq. (4.188). Because any (v, 7) must belong to one and
only one of these sets, the proof of part F is completed.

Finally, with the aid of Theorems 4 and 16, one can obtain part G from part F. QED.

As promised earlier, a proof for Theorem 34 will be provided in the remainder of the
paper. As a preliminary, we have Theorem 36.

Theorem 36. In the domain 0 < x < 1, (A) I (z), J+(x), K4 (z), and L_(x) are
strictly monotonically increasing while L (z) is strictly monotonically decreasing. More-
over, we have (B)

3> 1Ii(x) >0, 0<z<l1 (4.223)
3> Jy(xz)>0 0<z<l (4.224)
1> Ky(x) >0, 0<z<l1 (4.225)
3>L_(z)>0 0<zx<l1 (4.226)
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and
Li(z) > 3, 0<z<l1 (4.227)

Proof. Let f'(z) e df (z)/dx for any function f of . Then (i) Egs. (4.91) and (4.98)

imply that
3r—2+2v3x2 -3 1
[(a)= 202V ZovE L 0<z<1 (4.228)
22322 — 3z + 1
(ii) Egs. (4.92) and (4.100) imply that
T () = —23 + 622 —x + 2+ 4/2(2® —z + 2)
* (2 —x)2y/2(x3 —x +2)
(4.229)

21— ) 452 414 (1- ) + 430 719

:x( x)+br+1+(1—2x)+ (z x+)>0’ 0<z<l
(2—12)2/2(x3 —x+2)

(iii) Egs. (4.114) and (4.118) imply that

V1—2x+ 522 - (1—x)
2221 — 2z + a2

(iv) Egs. (4.122) and (4.126) imply that

K’ (x) =

> 0, 0<zx<l1 (4.230)

2[4—95—2 2(2—1:—1:2)}

L@ = x24/2(2 — x — x?)

> 0, 0<z<l1 (4.231)

and (v) Egs. (4.122) and (4.126) imply that

QP_x+2¢ﬂ7r;tzﬂ
<

L@ =~ x2y/2(2 — x — x?)

0, 0<z<l (4.232)

Thus part A is true.
Moreover, by using (i) Egs. (4.91), (4.92), (4.114), and (4.122), and (ii) L’hopital’s
rule, one has (i)

lim /i (z)= lim Jy(z)= lim L_(z)= lim Ly(z)=3, and lim K, (z)=1

r—1— rx—1— r—1— r—1— r—1—
(4.233)
(ii)
lim I, (z) = li <3+ bz — 3 ) 3+ (—3)=0 (4.234)
im )= lim = —3) = .
so0t T 2Ot 322 — 3z + 1
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lim J,(z) =0 (4.235)

1 5z — 1 1
lim K, (z)= lim = (1 —-(1-1)=0 4.236
and (v)
2(1+2
lim L (z) = lim |—14——20F28) |44 (4.237)
z—0+ z—0+ 22—z —z?)

part B now follows from Part A and Egs. (4.233)—(4.237). QED

An immediate result of Theorem 36 and the fact that 0 <z < Vz <1if0 <z <1 is
given in Theorem 37.

Theorem 37. We have

v <Vr <Ly(x), Ii(r)<Li(x), Jy(z)<Li(w),

Ki(z) < Ly(z) and L_(z)< Li(x), 0<z<l (4.238)

Theorem 37 is but one of many algebraic relations that are needed in the proof of
Theorem 34. Note that, in establishing other needed relations, several inequalities that
involve the four prinicipal square roots that appear in the definitions of Iy (x), Ji(z),
Ki(z), and Li(x), i.e.,

V3z2 —-3x+1>0, —00 < x < 400 (4.239)
V2(x3 —x+2) >0, O<z<2 (4.240)
V1—2x+5x2>0, —00 <z < 400 (4.241)
and
22—x—22) >0, —-2<zr<l1 (4.242)

(which follow from Egs. (4.97), (4.100), (4.117), and (4.124), respectively) will be used
repeatedly. Also to be used often is the following algebraic property:

Property I. Let a > 0 and b > 0. Then

>0 &S a—b>0
-, =0 < a—-b=0 (4.243)

<0 S a—b<0
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With the above preparations, a set of relations will be given in Theorems 38-48.

Theorem 38. We have
>0 if 0<z<3-2V2
r—I () =0 if 2=3-—2V2 (4.244)

<0 if 3—2v2<zx<1

Proof. Let 0 < z < 1 throughout the proof. Then Eq. (4.91) implies that

2 _3x4+2—-2V322 -3z +1
p— T (2)= 20 v ST (4.245)

T

With the aid of Property I, Eq. (4.244) is a result of Eq. (4.245) and the following relations:
(i) Eq. (4.239); (ii)
22 =3z +2=(x—1)(z—2)>0 (4.246)

(iii)

2
(a:2—3x+2)2—< 3x2—3x+1) — 22(2? — 62+ 1)

(4.247)
= 22 [m (34 2\/5)] [x —(3- 2\/5)}
and (iv) 0 < 3 —2v2 < 1 < 3+ 2v2. QED.
Theorem 39. We have

x < Ky(x), 0<zx<l1 (4.248)

Proof. Let 0 < z < 1 throughout the proof. Then Eq. (4.114) implies that

VI—2z+522 — (222 —x+1

K (z)—z= v 52% - (227 —wt 1) (4.249)

2x

With the aid of Property I, Eq. (4.248) is a result of Eq. (4.249) and the following relations:
(i) Eq. (4.241); (i)

207 —x+1=2(x—1/4)*+7/8>17/8 (4.250)
and (iii)
2
(\/1—2x+5x2) 22— a4+ 1)2 =421 —2) > 0 (4.251)
QED.
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Theorem 40. Let ¢35 be the constant defined in Eq. (4.157). Then

>0 if 0<z<cs
V=TI (x){ =0 if z=c3 (4.252)
<0 if gs<axxl

Proof. Let 0 < z < 1 throughout the proof. Then Eq. (4.91) implies that

-3 2—2v3x? -3 1
Vi — I (x) = x/x — 3z + V3x x + (4.253)

T

With the aid of Property I, Eq. (4.252) is a result of Eq. (4.253) and the following relations:
(i) Eq. (4.239); (ii)

ev/r—3r+2=(1-vVz)[1+2Vz+ (1-2)] >0 (4.254)
(i)
(x\/_—3x+2)2—( 3962—3:(:—1—1)2:x3—6x5/2—3x2+4x3/2

L\/ﬁ) (\/5_ 7_7@) (4.255)

:xS/Q(‘/EH)(\/E_ 2 >

2
(iv) 0 < (7T—33)/2 < 1 < (7+V/33)/2; and (v) c5 = [(7— \/ﬁ)/Q] . QED.
Theorem 41. Let ¢35 be the constant defined in Eq. (4.157). Then

>0 if O<zxz<ecs
Ve —Ji(x){ =0 if z=c3 (4.256)
<0 if s<ax<xl

Proof. Let 0 < z < 1 throughout the proof. Then Eq. (4.92) implies that

VT — . (z) = —x/r =32 +2/r +2— /223 -z + 2) (4.257)

2—x

With the aid of Property I, Eq. (4.256) is a result of Eq. (4.257) and the following relations:
(i) Eq. (4.240); (ii)

—zvr =3z +2Vz+2=(1-Vz)(z+4y/x+2) >0 (4.258)
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(iii)

(~eve - 30+ 2z +2)" - [V2(e® — o+ 2)]

= —2° 4+ 62°/% 4 5% — 162%/% — 62 + 8/x (4.259)
7+/33 7-/33
- v - (e + ) (vi- ) (Ve - TR

(iv) 0 < (7= V33)/2 < 1< (74 V/33)/2; and (v) c5 = [(7 - \/ﬁ)/Q]z. QED.

Theorem 42. We have

K (x) <z, 0<z<l1 (4.260)

Proof. Let 0 < z < 1 throughout the proof. Then Eq. (4.114) implies that

20/xr —x +1—+/1—2x+ 522
Vi K, (z) = 22V - (4.261)

With the aid of Property I, Eq. (4.260) is a result of Eq. (4.261) and the following relations:
(i) Eq. (4.241); (ii)
22V —x+1=2zy/x+(1—2) >0 (4.262)

and (i)
(2avE —a+1)" - (WY — dzyT(1— 1) (1 - T) >0 (4.263)
QED.
Theorem 43. Let ¢4 be the constant defined in Eq. (4.158). Then
>0 if O<z<cy
Ve—L ()3 =0 if x=¢, (4.264)

<0 if gq<ax<l

Proof. Unless specified otherwise. Let 0 < x < 1 in this proof. Then Eq. (4.122)
implies that
2\/22—-z—2%)— (44— —x\/x)
x

Vi —L_(z) = (4.265)
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To proceed, note that

[2 22—z — x2)]2 G xﬂ)2 = —zv/z g(x) (4.266)

where et
g(x) = zvx + 22+ 9vx — 8, x>0 (4.267)

Because (i)
g (z) =3vz/2+2+9/(2yx) = 3/(2Vz) [(Vz +2/3)* +23/9] >0, x>0 (4.268)

and (ii)
g(0)=—-8 and g(1)=4 (4.269)

one concludes that g(x) is strictly monotonically increasing in the interval 0 < x < 1 and
there is one and only one real root of g(x) = 0 in this interval. By using the standard
formula for the roots of a cubic equation, it can be shown that this root is given by = = ¢4.
Moreover, Eqgs. (4.268) and (4.269) imply that: (i) g(z) < 0if 0 < & < ¢q; (i) g(x) = 0 if
x = c¢yg; and (iil) g(x) > 0if ¢4 < < 1. As such Eq. (4.266) implies that
>0 if O<z<cy
2
[2 2(2—x—x2)] —(d—r—aya) =0 if x=c (4.270)

<0 if g<ax<l

With the aid of Property I, Eq. (4.264) is a result of Eqgs. (4.265) and (4.270), and the the
following relations: (i) Eq. (4.242); and (ii)

4—z—ayr=2+(1-2)+ (1-2vx) > 2, 0<z<l1 (4.271)

QED.
Theorem 44. We have

L_(z) < Jy(x), 0<zx<l1 (4.272)

Proof. Let 0 < x < 1 throughout this proof. Then Egs. (4.92) and (4.122) imply that

Jo(2)— I (z) = zy/2(23 —x+2)+2(2—- 92(2 i(i)— r—x?)— (8 — 4z — 2z°) (4.273)

Let

Bz) ¥ a/2(23 — 2+ 2) + 22— 2)v/2(2— 2 — 22) + (8 — 4o — 22?) (4.274)
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and

def

Bi(z) = 4/ (22 —2+2)2+2) £ V1 — 2 (84 3z — 2?)
Then (i)

[T () — L_(2)] B(x)

82(2 — z)\/(z3 —x +2)(1 — 2)(2 + x) + 22° — 122 + 623 + 3622 — 32z

(2 —x)
_ 8x(2—z)\/(23 —z+2)(1—2)(2+2) — 22(1 — 2)(2 — 2)(8 + 3z — 2?)
x(2 —x)
=2v1—zp_(x)
and (ii)

B_(z)By(x) = 2° + 92* + 312> + 392 4 16z
Thus

[J4(z) = L ()] B(2) B+ () = 2v1 — z(2® + 92* + 312° + 392 + 162)

By using (i) Egs. (4.240) and (4.242); (i) v/(z® — 2 +2)(2 + z) > 0; (iii)
8 —4dx —22° =24+ 4(1 — ) +2(1 — 2*) > 2

and (iv)
8+3z—2°=T+3x+(1—2°)>7

it follows from Eqs. (4.274) and (4.275) that

B(z) >0 and py(x) >0, 0<z<1

(4.275)

(4.276)

(4.277)

(4.278)

(4.279)

(4.280)

(4.281)

Eq. (4.272) is a result of Eq. (4.281) and the fact that the expression on the right side of

Eq. (4.278) is positive everywhere in the interval 0 < z < 1. QED
Theorem 45. We have

>0 if 0<z<3/11
Ki(z)—Iy(x)q =0 if x=3/11

<0 if 3/l <z <1
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Proof. Egs. (4.91) and (4.114) imply that

(3 —5z) — (4V322 — 3z + 1 — V1 — 2z + ba?)
2z ’

Ky(z) = Li(2) =

By using (i) Egs. (4.239) and (4.241), and (ii)

2 2
(4 322 — 3z + 1) - <\/1 —2x+5x2> = 432% — 462 + 15
= 43[(x — 23/43)* + 116/(43)*] > 116/43, —00 <7 < 00

an application of Property I leads to the conclusion

4322 — 3z +1—+/1— 2z +522 >0, —00 < x < 400

Moreover, we have
<0 if >3/5
3—bx
>0 if z<3/5

Combining Eqs. (4.283), (4.285) and (4.286), one has

To proceed, let

def

§(x) =

N | =

and

def

Er(z) = 2¢/(322 — 3z + 1)(1 — 2z + 5a2) £ (72 — 5z + 2), 0<z<l1

Then Eqgs. (4.285) and (4.286) imply that

£(x) >0, 0<z<3/5

(3—596—1—4\/3962—3:(:—1—1—\/1—2:1:—1—5:1:2), O<z<l

0<xz<1 (4.283)

(4.284)

(4.285)

(4.286)

(4.287)

(4.288)

(4.289)

(4.290)

In addition, by using (i) v/(322 — 3z + 1)(1 — 2z + 522) > 0, —o0 <z < +oo (which follows

from Eqgs. (4.239) and (4.241)); and (ii)

72® —5x+2=7[(z —5/14)* + 31/196] > 31/28, —00 < T < 400

one has
&r(z) >0, 0<zx<l1
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Combining Eqgs. (4.290) and (4.292), one arrives at the conclusion:
&(x) & () >0, 0<z<3/5 (4.293)

Next, Eqgs. (4.283), (4.288), and (4.289) imply that (i)

[Ky(z) — Iy (2)]&(x) = , 0<z<l1 (4.294)

and (ii)
E_(x) €4 (z) = 11at — 1423 + 322 = 112%(z — 1)(z — 3/11), O<z <1 (4.295)
Thus
(K. (z) — I (2)] £(2)é4(2) = 1la(z — 1) (z — 3/11), O<z<l (4.296)
It follows from Eqs. (4.293) and (4.296) that
>0 if 0<z<3/11
K (z) - I(z){ =0 if x=3/11 (4.297)
<0 if 3/11 <z <3/5

Eq. (4.282) is an immediate result of Eqgs. (4.287) and (4.297). QED.
Theorem 46. We have

>0 if 0<z<3/11
L (z)—I.(x){ =0 if z=3/11 (4.298)

<0 if 3/1l<x<1
Proof. Egs. (4.91) and (4.122) imply that

L_(2)— I.(z) = % (3 22— \/202— 7 —a2) — /322 — 3z + 1) L 0<z<1 (4.299)

By using Eq. (4.299) and the definitions

<3—2x+\/2(2—x—a:2)+ 3x2—3a:+1>, O<az<l (4.300)

plr) <

DN |
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and

def

pa(z) = 322 — T + 44222 -z — 22)(322 — 3z + 1),

one has
L (2) — I+ (2)] pu(a)

and

p—(z)

X

Y

O<z<l

O<z<xl

p— () py () = 33z* — 422° 4+ 922 = 332% (2 — 1)(x — 3/11),

In turn, Egs. (4.302) and (4.303) imply that

[L—(z) = Iy (2)] () py- () = 332(x — 1)(x — 3/11),

O<z<xl

O<z<l1

By using (i) Eqgs. (4.239) and (4.242); (ii) 3 — 22 > 0 if < 3/2; and (iii)

322 —Tx+4=3(x—1)(x—4/3) >0,

Egs. (4.300) and (4.301) imply that

p(x) >0 and py(x) >0,

r<1l or z>4/3

O<zx<xl

Eq. (4.298) is an immediate result of Egs. (4.304) and (4.306). QED.

Theorem 47. We have

>0 if 0<z<3/1lor3/ll<z<1

L_(z) - Ki(x)

=0 if =3/11

Proof. Eqs. (4.114) and (4.122) imply that

L_(2) - Ki(2) =

9— 3z —4y/2(2— 2 —22) — V1 — 2z + 522

By using Eq. (4.308) and the definitions

def

P(z) =

N =

and

2x

Y

(9—3a:+4 2(2—x—x2)+\/1—2x+5x2>,

def

Yi(z) E 922 — 524+ 4+£2/202 — z — 22)(1 — 2z + 5x2),
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O<zxxl

O<xxl

(4.301)

(4.302)

(4.303)

(4.304)

(4.305)

(4.306)

(4.307)

(4.308)

(4.309)

(4.310)



one has

[L_(z) — K4(z)]9(x) = w—af"’”), 0<a<l (4.311)
and
Y_(x) i (z) = 1212* — 662° + 922 = 1212 (z — 3/11)%, O0<z <1 (4.312)

In turn, Egs. (4.311) and (4.312) imply that
[L_(z) — Ky(2)]¢(x) Yy (x) = 121x(z — 3/11)2, O<z <1 (4.313)
By using (i) Eqgs. (4.241) and (4.242); (ii) 9 — 32 > 0 if z < 3; and (iii)
92% — br +4 =9 [(z — 5/18)* + 119/324] > 119/36, —00 < 7 < 400 (4.314)
Egs. (4.309) and (4.310) imply that
Y(x) >0 and Yi(x) >0, 0<z<l1 (4.315)

Eq. (4.307) is an immediate result of Egs. (4.313) and (4.315). QED.
Theorem 48. Let c3 be the constant defined in Eq. (4.157). Then we have

>0 if O<z<ecs
Ji(x)—Ii(x) =0 if z=c3 (4.316)
<0 if gs<axxl

Proof. Egs. (4.91) and (4.92) imply that

622 — 10z +4 — [2(2 —e)V32% — Bz +1- 220 —z + 2)]

Ji(z) = I (z) =

(2 —x) ’
O0<z <1
(4.317)
To proceed, note that Eq. (4.239) implies that
2(2—xz)V/3x?2 -3z +1 >0, x <2 (4.318)
Also Eq. (4.240) implies that
x/2(x3 —z+2) >0, 0<ax<2 (4.319)
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Moreover, we have

22~ 2)V3? 82 +1] - [2v2 212

= —22° + 122* — 582° + 9622 — 64z + 16
=2(1 — z)(x* — 523 + 242 — 24z + 8) (4.320)
2(1 — z)[z*(2® — 5z + 6) + 2(9z* — 12z + 4)]
21—z)[2*(z —2)(z —3)+2(3z—2)*)] >0, O<z<l

With the aid of Eqgs. (4.318)—(4.320), an application of Property I leads to the conclusion

22 —2)V322 =3z +1—a\2(22—2+1) >0, 0<z<l1 (4.321)

Next note that
z(2—1x) >0, 0<z<?2 (4.322)

and
<0 if 2/3<z<1

62° — 10z +4 = 6(z — 1)(x — 2/3) (4.323)
>0 if x<2/30orzx>1

By combining Eq. (4.317) with Egs. (4.321)—(4.323), one concludes that
Ji(x) —I(x) <0, 2/3<z<1 (4.324)
To study the case where 0 < x < 2/3, let
e 1
n(x) e 5 [6:{:2 — 10z + 4+ 2(2 — z)/ 322 —3:(:—1—1—:(:\/2(333—96—1—2)] , 0<z <1

(4.325)
and

2) ¥ o2/ (322 =32+ 1)(2® —2 +2) £ (—2® + 1022 — 92 +4), 0 <z < 1 (4.326)
By using Eqgs. (4.321) and (4.323), Eq. (4.325) implies that

n(z) > 0, 0<xz<2/3 (4.327)

Moreover, because (i) /(322 =3z +1)(z3 — 2 +2) > 0, 0 < z < 2 (see Egs. (4.239) and
(4.240)); and (ii)

—2® +102° — 9z +4=2*(1—2)+ (Br —3/2)* +7/4>7/4, O<z<1 (4.328)
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Eq. (4.326) implies that
Ny (x) >0, 0<z<l1 (4.329)

Next, by using Eqgs. (4.157), (4.317), (4.325) and (4.326), it can be shown that (i)
[T (2) — Ly (z)]n(2)

~2V22(2—2)/(32% =3z + 1)(a® — v + 2) — (2° — 122" 4 292° — 2222 + 8x)
B (2 —x)

C2V22(2 - 2)/(322 =3z +1)(2® — 2z + 2) — (2 — z)(—2® + 1022 — 9z + 4)
B (2 —x)

=n_(x), 0<z<l1

(4.330)
and (ii)

n_(x)ny(x) = —2® + 442° — 1422* + 17223 — 8922 + 162 = 2(1 — x)3(2? — 41z + 16)

41+7\/ﬁ)

0<z <1
5 T

=2(1 —2)*(z — c3) (a: -
(4.331)
In turn, Egs. (4.330) and (4.331) imply that

_414+7v33

[Ty (z) — I (@) n(z) ny(x) = 2(1 — 2)3(z — c3) (x 5 ) , 0<z<1 (4.332)

With the aid of Eqs. (4.327), (4.329) and (4.332), and the relation

41 + 733
0<03<2/3<1<%\/_ (4.333)
one concludes that
>0 if O0<z<ecs

<0 if eg<2<2/3
Eq. (4.316) now is an immediate result of Eqgs. (4.324) and (4.334). QED.

With the above preparations, Theorem 34 can now be proved. Part A is identical to
part A of Theorem 36. Part B can be shown using Theorems 38-48 and the two relations

VvV < Li(z) and I,(z)< Ly(x), 0<z<l (4.335)
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which form a part of Theorem 37. Part C follows from Egs. (4.230), (4.231), and (4.156).
Part D was shown in Egs. (4.233) and (4.237). QED.

Finally, note that none of the relations
x<Ji(x), x<L_(z), and Ki(z)< Ji(x), 0<zx<l1 (4.336)

appears in Theorems 37-48. However, they can be shown using Theorem 34. As such,
they can be considered as results of Theorems 38-48 and the relations Eq. (4.335).
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5. Conclusions and Discussions

With the aid of many unexpected mathematical simplifications that occur along the
way, it has been shown in Sec. 4 that there is an explicit analytical solution to the implicit
stability conditions stated in Theorem 3. The first and perhaps the most important “break”
encountered is the simple relation Eq. (4.23), i.e., H(v, T, s), a quartic polynomial in s, is
equal to the product of 4(1 — v?)s? and G(v, T, s), a quadratic polynomial in s. Without
Eq. (4.23) and the fortunate fact that both D(v,7,s) and F(v,T,s) are also quadratic
polynomials in s, the relatively straightforward study of the necessary stability conditions
Egs. (4.25)—(4.27) (Theorem 6) as presented in Sec. 4 would have become much more
complicated.

Moreover, the fact that F'(v,7,1) and H(v, 7,1) can be cast into the simple factorized
forms Eqgs. (4.35) and (4.37), respectively, are instrumental in the successful effort to
establish Eq. (4.41) as necessary conditions for stability (Theorem 12).

With the aid of Theorems 13-15, it was shown that the special case in which (v, T)
satisfies Eq. (4.2) and yet is c-7 unstable occurs if and only if 7 = v? = 1 (Theorem 16).
Using Theorem 16, Theorem 17 was then established to provide a set of necessary and
sufficient stability conditions much more explicit and easier to handle than those given
originally in Theorem 3. Based on Theorem 17, it was then shown that the c-7 scheme is
stable if (a) v =0 and 7 > 0; or (b) v? =1l and 7 > 1;0r (¢) 0 < v?2 <1 and 7 = |V
(Theorem 18).

Excluding the four special cases addressed in Theorems 16 and 18, the set ¥ defined
in Eq. (4.66) is the set of all other (v,7) that satisfy the necessary stability conditions
7 > v? and v? < 1 (Theorem 19). To facilitate the development, ¥ is divided into two
disjoint subsets ¥_ and W, which are defined in Eq. (4.66) and (4.67).

It turns out that Eqgs. (4.25) and (4.27) are satisfied by all (v,7) € ¥ (Theorems 21
and 22). Thus, according to Theorem 17, a given (v,7) € ¥ is ¢-7 stable if and only if
it satisfies Eq. (4.26). As such, one arrives at the conclusion that a given (v,7) € U is
c-T stable if and only if it satisfies Eq. (4.84) (Theorem 23). This necessary and sufficient
stability condition obviously is even simpler than those given in Theorem 17.

With the aid of Theorems 24—-31, for the set ¥, we are able to obtain the explicit
solution to the necessary and sufficient stability condition Eq. (4.84) in the form given in
Theorem 32. The functions I (z), Jy(z), Ky(z), Li(z), and L_(z), 0 < x < 1, that
appear in Theorem 32 are defined in Eqs. (4.91), (4.92), (4.114), and (4.122).

In principle, whether a given (v, 7) is ¢-7 stable can be determined by using Theorems
12, 16, 18, 19, and 32. However, by using the alternative definitions of ¥_ and ¥ given
in Theorem 33, and the ordering properties Eqs. (4.160)—(4.168) given in Theorem 34, it
was shown that Theorems 12, 16, 18, 19, and 32 can be combined and turned into the
simple explicit form of necessary and sufficient stability conditions given in Theorem 35.

Finally note that the proof of the ordering properties Eqgs. (4.160)—(4.168) is hinged
on the rather incredible facts that the 4-6th order polynomials in = or \/z that appear
in Eqs. (4.247), (4.251), (4.255), (4.259), (4.263), (4.295), (4.303), (4.312), and (4.331) all
can be factorized and studied analytically.
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Appendix A. Numerical Validation of Theorem 34
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* kK
* kK
* x K
* kK

* kK
* x K
* kK
* kK
* kK
* x k
* kK

* kK
* x k
* kK
* kK
* kK

a0

implicit real*8(a-h,o-2z)
Program "inegs.for".

This program is used to verify numerically the inequalities
Equations (4.160)--(4.168) (see Theorem 34).

The functions I-plus, K-plus, L-minus, and L-plus are undefined
at x=0.d0. Thus, instead of being evaluated at x=0.d0, these
functions will be evaluated at x=ep where ep is a very small
positive number.

At x=1.d0, 2.d0*(2.d0-x-x**2)=0.d0. Because of round-off errors,
the value of this expression may become negative when x is very
close to 1.d0. As such the square root of this expression and
therefore the functions L-minus and L-plus may be undefined
computationally when x is too close to 1.d0. Thus, instead of
being evaluated at x=1.d0, the functions will be evaluated at
x=1.d0-eq where eq is a very small positive number.

nl = number of uniform sub-intervals in (0,cl)

n2 = number of uniform sub-intervals in (cl,c2)

n3 = number of uniform sub-intervals in (c2,c3).

nd4 = number of uniform sub-intervals in (c3,c4)

n5 = number of uniform sub-intervals in (c4,1)

srt (x)=dsgrt (x)

fip(x)=(3.d0*x-2.d0+2.d0*dsgrt (3.d0*x**2-3.d0*x+1.d0)) /x
fip(x)=(3.d0*x-2.d0+dsqgrt (2.d0* (x**3-x+2.d0)) )/ (2.d0-x)
fkp (x)=(x-1.d0+dsqgrt (5.d0*x**2-2.d0*x+1.d0) )/ (2.d0*x)
film(x)=(4.d0-x-2.d0*dsqrt (2.d0* (2.d0-x-x**2)))/x
flp(x)=(4.d0-x+2.d0*dsqgrt (2.d0* (2.d0-x-x**2))) /x

nl=17

n2=10

n3=12

n4=14

n5=47

ep=1.d-7

egq=1.d-12

one=1.d0-eq

nbm=n5-1

cl1=3.d0-2.d0*dsqgrt (2.d0)

c2=3.d0/11.d0

c3=(41.d0-7.d0*dsqgrt (33.d0))/2.d0

cd=(dexp((1.d0/3.d0)*dlog(dsqrt (1664.d0/27.d0)+181.d40/27.d0))
-dexp ((1.d0/3.d0) *dlog (dsqrt (1664.d0/27.d0)-181.d0/27.d0))
-2.d0/3.d0) **2

open (unit=8,file='inegs.txt"')
write (8,1)
write (
write ( nl,n2,n3,n4,n5
write ( ep,eq
write (
write (
(

write

)y cl,c2,c3,c4

dxl=cl/dfloat (nl)
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100

200

300

400

500
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dx2=
dx3=
dx4d=
dx5=

—~ e~~~

write (
write (
write (8,
write (
x=0.d0

do 100 i=

x=x+dx1
write (8,
write (8,
write (8,
continue
write (8,
x=cl

do 200 i=

x=x+dx2
write (8,
write (8,
write (8,
continue
write (8,
x=c2

do 300 i=

x=x+dx3
write (8,
write (8,
write (8,
continue
write (8,
x=c3

do 400 i=

x=x+dx4
write (8,
write (8,
write (8,
continue
write (8,
x=c4

do 500 i=

x=x+dx5

write (8,
write (8,
write (8,

c2-cl) /dfloat (n2
c3-c2) /dfloat (n3
cd4-c3) /dfloat (n4d
1.d0-c4) /dfloat(

)
)
)
nb)

20) ep

30) fip(ep),ep, ftkp(ep),flm(ep)
40) fjp(ep),srt(ep),flp(ep)
1,nl

20) x

30) fip(x),x,fkp(x), flm(x)

40) fip(x),srt(x),flp(x)

2)

1,n2

20) x

50) x,fip(x), fkp(x), flm(x)

40) fip(x),srt(x),flp(x)

2)

1,n3

20) x

60) x,fkp(x),flm(x),fip(x)

40) fip(x),srt(x),flp(x)

2)

1,n4

20) x

70) x,fkp(x),flm(x),srt(x)

80) fjp(x),fip(x),flp(x)

2)

1,nb5m

20) x

90) x,fkp(x),srt(x),flm(x)
80) fjp(x),fip(x),flp(x)

continue

write (8,2)

write (8,20) one

write (8,90) one, fkp(one),srt (one), flm(one)

write (8,80) fjp(one),fip(one), flp (one)

close (unit=8)

format (' ***** The output for the code "inegs.for". *xx*x&xkrxxxl)
format v ~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k***********************************')
format (' nl =',1i3,"' n2 =',i3,' n3 =',13,"' n4 =',i3,"' n5 =',13)
format (' ep =',g9l14.7,' eq =',gl4d4.7)

format (' cl =',g14.7,"' c2 =',g14.7,"' c3 ="',g14.7,"' c4 ="',gl4.7)
format (' x =',gl4.7)

format (' fip =',gl14.7,' x =',gl14.7,"'" fkp =',gl4.7,"' flm ='gld.7)
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format
format
format
format
format
format
stop
end

=1,914.7,"

',gl4.7,"
',gl4.7,"
',gl4.7,"

=1,914.7,"

',gl4.7,"

fip =',g14.7,"
fkp =',g14.7,"
fkp =',g14.7,"

fkp =',gl4.7,"

59

srt =',g914.7,"

fkp =',g9l14.7,
flm =',qgl4.7,
flm =',ql4.7,

fip =',914.7,' flp ='gl4.7

srt =',g9l4.7,

flp =',914.7)

)

flm
fip
srt

flm

='gl4.

'gl4.
='gl4.
='gl4.






dede v

: The output for the code

nl
ep

B R R RURY

f15
fip.;
X =
fip
pr

f1p
fip
X =
fip
pr
f1p
fip
X =
fip
pr
f1p
fip
X =
fip
pr
f1p
fip
X =
fip
pr
f1p
fip
X =
fip
pr
f1p
fip
X =
fip
pr
f1p
fip
X =
fip
pr
f1p
fip
X =
fip
fip

0.

‘II Il

Trnonimnolhilolilholilolilolilholilolilolilollolilhollollolilholllolll o

17 n2 = 10 n3

ineqs.txt

-Ineqs -For-" TRk dehdedehdden
B R b b b b b b b b i b

12 n4 = 14 n5 = 47

0. 1000000E 06 &q =

e NN NY

= 0. 1715729 .

1000OOOE 06
0.7549517e-07

0.1250000E-06 s

e ol ol e e e Ve Ve Ve

.1009252E 01
0.7685593E-02
0.1267669E-01
.2018504E-01
0.1561019E-01
0.2547771E-01
.3027757E-01
0.2378408E-01
0.3840651E-01
.4037009e-01
0.3221806E-01
0.5146663E-01
.5046261E-01
0.4092349€E-01
0.6466170E-01
.6055513E-01
0.4991230€E-01
0.7799544E-01
.7064765E-01
0.5919705E-01
0.9147166E-01
.8074018E-01
0.6879090E-01
0.1050943
.9083270E-01
0.7870770E-01
0.1188673
.1009252
0.8896199E-01
0.1327948
.1110177
0.9956905E-01
0.1468811
.1211103
0.1105449
0.1611304
.1312028
0.1219063
0.1755472
.1412953
0.1336709
0.1901361
.1513878
0.1458572
0.2049017
.1614804
0.1584845
0.2198489
.1715729
0.1715729
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0.3331933
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0.3480090
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0.3758927
.1513878 fk
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.1614804 fk
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.1715729 fk
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.5302216

0.1154632E-06

0.1138297e-01

0.2282467E-01

0.3432655E-01

0.4589012€e-01

0.5751692E-01

0.6920851E-01

0.8096653E-01

0.9279262E-01

0.1046885

0.1166559

0.1286967

0.1408127

0.1530058

0.1652779

0.1776312
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><><C‘h><><—h><><—h><><—h><><—h><><—h><><—h><><—h><><—h><><—h><>< AFHX X HX X HAX X HX X HX X HX X HX X HhX X HhX X HhX X

ineqgs.txt

= 0.1816883

= 0.1816883 fip = 0.1851749 fkp = 0.2120452 fim = 0.2152275
p = 0.2503425 srt = 0.4262491 flp = 41.81622

= 0.1918038

= 0.1918038 fip = 0.1992835 fkp = 0.2252789 fim = 0.2279558
p = 0.2659001 srt = 0.4379541 flp = 39.48134

= 0.2019192

= 0.2019192 fip = 0.2139216 fkp = 0.2386021 fim = 0.2407767
p = 0.2816607 srt = 0.4493542 flp = 37.37903

= 0.2120346

= 0.2120346 fip = 0.2291133 fkp = 0.2520026 fim = 0.2536927
p = 0.2976296 srt = 0.4604722 flp = 35.47599

= 0.2221501

= 0.2221501 fip = 0.2448834 fkp = 0.2654682 fIm = 0.2667063
p = 0.3138126 srt = 0.4713280 flp = 33.74499

= 0.2322655

= 0.2322655 fip = 0.2612574 fkp = 0.2789864 fim = 0.2798201
p = 0.3302153 srt = 0.4819393 flp = 32.16352

= 0.2423810

= 0.2423810 fip = 0.2782619 fkp = 0.2925447 fim = 0.2930369
p = 0.3468438 srt = 0.4923220 flp = 30.71286

= 0.2524964

= 0.2524964 fip = 0.2959241 fkp = 0.3061303 fIm = 0.3063594
p = 0.3637040 srt = 0.5024902 flp = 29.37726

= 0.2626118

= 0.2626118 fip = 0.3142718 fkp = 0.3197307 fIm = 0.3197905
p = 0.3808023 srt = 0.5124567 flp = 28.14342

= 0.2727273

= 0.2727273 fip = 0.3333333 fkp = 0.3333333 fIm = 0.3333333
p,5,0,3981449 Srt =0.5222330  flp = 2700000

= 0.2828359

= 0.2828359 fkp = 0.3469168 fIm = 0.3469816 fip = 0.3531240
p = 0.4157266 srt = 0.5318232 flp = 25.93797

= 0.2929445

= 0.2929445 fkp = 0.3604781 fim = 0.3607478 fip = 0.3736852
p = 0.4335657 srt = 0.5412435 flp = 24.94818

= 0.3030531

= 0.3030531 fkp = 0.3740056 fIm = 0.3746351 fip = 0.3950460
p = 0.4516690 srt = 0.5505026 flp = 24.02338

= 0.3131618

= 0.3131618 fkp = 0.3874879 fim = 0.3886471 fip = 0.4172353
p = 0.4700437 srt = 0.5596086 flp = 23.15726

= 0.3232704

= 0.3232704 fkp = 0.4009141 fim = 0.4027873 fip = 0.4402814
p = 0.4886969 srt = 0.5685687 flp = 22.34430

= 0.3333790

= 0.3333790 fkp = 0.4142738 fim = 0.4170595 fip = 0.4642118
p = 0.5076361 srt = 0.5773898 flp = 21.57965

= 0.3434876

= 0.3434876 fkp = 0.4275569 fim = 0.4314677 fip = 0.4890530
p = 0.5268689 srt = 0.5860782 flp = 20.85904

= 0.3535962

= 0.3535962 fkp = 0.4407542 fim = 0.4460158 fip = 0.5148299
p = 0.5464032 srt = 0.5946396 flp = 20.17866

= 0.3637049

= 0.3637049 fkp = 0.4538567 fIm = 0.4607081 fip = 0.5415657
p = 0.5662470 srt = 0.6030795 flp = 19.53515

= 0.3738135

= 0.3738135 fkp = 0.4668562 fim = 0.4755489 fip = 0.5692811
p = 0.5864085 srt = 0.6114029 flp = 18.92550

= 0.3839221

= 0.3839221 fkp = 0.4797451 fIm = 0.4905430 fip = 0.5979939
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inegs.txt

fjp = 0.6068962 srt = 0.6196145 flp = 18.34702

x = 0.3940307

x = 0.3940307 fkp = 0.4925164 flm = 0.5056950 fip = 0.6277187
fjp = 0.6277187 srt = 0.6277187 flp = 17.79729

x = 0.4037587

x = 0.4037587 fkp = 0.5046894 fim = 0.5204302 srt = 0.6354201
fjp = 0.6480814 fip = 0.6572896 flp = 17.29339

x = 0.4134866

x = 0.4134866 fkp = 0.5167423 fim = 0.5353209 srt = 0.6430292
fjp = 0.6687705 fip = 0.6878137 flp = 16.81234

x = 0.4232145

x = 0.4232145 fkp = 0.5286703 fim = 0.5503721 srt = 0.6505494
fjp = 0.6897943 fip = 0.7192926 flp = 16.35257

x = 0.4329424

x = 0.4329424 fkp = 0.5404690 fIm = 0.5655889 srt = 0.6579836
fjp = 0.7111613 fip = 0.7517238 flp = 15.91262

x = 0.4426703

x = 0.4426703 fkp = 0.5521347 fim = 0.5809764 srt = 0.6653348
fijp = 0.7328803 fip = 0.7851000 flp = 15.49116

x = 0.4523983

x = 0.4523983 fkp = 0.5636642 fIm = 0.5965403 srt = 0.6726056
fjp = 0.7549601 fip = 0.8194089 flp = 15.08699

x = 0.4621262

x = 0.4621262 fkp = 0.5750545 fim = 0.6122865 srt = 0.6797986
fjp = 0.7774099 fip = 0.8546332 flp = 14.69900

x = 0.4718541

x = 0.4718541 fkp = 0.5863032 fim = 0.6282209 srt = 0.6869164
fjp = 0.8002391 fip = 0.8907504 flp = 14.32617

x = 0.4815820

x = 0.4815820 fkp = 0.5974081 fim = 0.6443499 srt = 0.6939611
fjp = 0.8234573 fip = 0.9277326 flp = 13.96757

x = 0.4913100

x = 0.4913100 fkp = 0.6083677 fIm = 0.6606804 srt = 0.7009351
fjp = 0.8470743 fip = 0.9655470 flp = 13.62232

x = 0.5010379

x = 0.5010379 fkp = 0.6191806 flm = 0.6772194 srt = 0.7078403
fjp = 0.8711002 fip = 1.004156 flp = 13.28964

x = 0.5107658

x = 0.5107658 fkp = 0.6298458 fim = 0.6939742 srt = 0.7146788
fjp = 0.8955453 fip = 1.043517 flp = 12.96878

x = 0.5204937

x = 0.5204937 fkp = 0.6403626 flm = 0.7109527 srt = 0.7214525
fjp = 0.9204201 fip = 1.083583 flp = 12.65907

x = 0.5302216

x = 0.5302216 fkp = 0.6507306 fim = 0.7281632 srt = 0.7281632
fjp = 0.9457355 fip = 1.124304 flp 12.35987

x = 0.5402169

x = 0.5402169 fkp = 0.6612284 srt = 0.7349945 fim = 0.7460974
fjp = 0.9722173 fip = 1.166769 flp = 12.06277

x = 0.5502122

x = 0.5502122 fkp = 0.6715692 srt = 0.7417629 flm = 0.7642956
fip = 0.9991881 fip = 1.209809 flp = 11.77555

x = 0.5602075

x = 0.5602075 fkp = 0.6817533 srt = 0.7484701 fim = 0.7827683
fjp = 1.026661 fip = 1.253358 flp = 11.49765

x = 0.5702028

x = 0.5702028 fkp = 0.6917814 srt = 0.7551177 flm = 0.8015269
fjp = 1.054648 fip = 1.297353 flp = 11.22857

x = 0.5801981

x = 0.5801981 fkp = 0.7016542 srt = 0.7617073 fim = 0.8205830
fjp = 1.083164 fip = 1.341727 flp = 10.96781
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ineqgs.txt

HX X AHAX X HX X AHAX X HX X AHAX X HX X HAX X HX X HAX X HX X HAX X HX X HAX X HX X HX X HX X HX X HX X HhX X HhX X

.

= 0.5901934

= 0.5901934 fkp = 0.7113728 srt = 0.7682404 fIm = 0.8399495
p = 1.112220 fip = 1.386415 flp = 10.71493

= 0.6001886

= 0.6001886 fkp = 0.7209383 srt = 0.7747184 fim = 0.8596397
p = 1.141833 ip = 1.431351 flp = 10.46950

= 0.6101839

= 0.6101839 0.7303522 srt = 0.7811427 fIm .8796680
p = 1.172015 = 1.476471 flp = 10.23113

= 0.6201792

= 0.6201792 0.7396159 srt = 0.7875146 fIm .9000497
p = 1.202782 = 1.521713 flp = 9.999448

= 0.6301745

= 0.6301745 0.7487310 srt = 0.7938353 a .9208013
p = 1.234148 = 1.567017 flp = 9.774095

= 0.6401698

= 0.6401698 0.7576992 srt = 0.8001061 fIm .9419404
p = 1.266130 = 1.612325 flp = 9.554745

= 0.6501651

= 0.6501651 0.7665224 srt = 0.8063281 a .9634858
p = 1.298742 = 1.657582 flp = 9.341082

= 0.6601603

= 0.6601603 0.7752023 srt = 0.8125025 fIm = 0.9854579
p = 1.332001 = 1.702736 flp = 9.132810

= 0.6701556

= 0.6701556 0.7837410 srt = 0.8186303 fim = 1.007879
p = 1.365924 = 1.747740 flp = 8.929647

= 0.6801509

= 0.6801509 0.7921404 srt = 0.8247126 fIm .030771
p = 1.400528 = 1.792548 flp = 8.731324

= 0.6901462

= 0.6901462 0.8004027 srt = 0.8307504 fIm .054162
p = 1.435830 = 1.837119 flp = 8.537585

= 0.7001415

= 0.7001415 0.8085299 srt = 0.8367446 fIm .078079
p = 1.471848 = 1.881414 flp = 8.348183

= 0.7101368

= 0.7101368 0.8165241 srt = 0.8426961 fIm .102551
p = 1.508601 = 1.925400 flp = 8.162884

= 0.7201320

= 0.7201320 0.8243875 srt = 0.8486059 fIm .127613
p = 1.546108 = 1.969045 flp = 7.981461

= 0.7301273

= 0.7301273 0.8321223 srt = 0.8544749 fIm .153300
p = 1.584388 = 2.012320 flp = 7.803693

= 0.7401226

= 0.7401226 0.8397306 srt = 0.8603038 fIm .179652
p = 1.623462 = 2.055201 flp = 7.629368

= 0.7501179

= 0.7501179 0.8472146 srt = 0.8660935 fIm .206713
p = 1.663349 = 2.097666 flp = 7.458277

= 0.7601132

= 0.7601132 0.8545766 srt = 0.8718447 fIm .234531
p = 1.704072 = 2.139695 flp = 7.290217

= 0.7701085

= 0.7701085 0.8618186 srt = 0.8775582 fIm .263160
p = 1.745652 = 2.181271 flp = 7.124987

= 0.7801038

= 0.7801038 0.8689429 srt = 0.8832348 fIm .292660
p = 1.788111 = 2.222381 flp = 6.962386

= 0.7900990

= 0.7900990 0.8759515 srt = 0.8888752 £Im .323099
p = 1.831472 = 2.263011 flp = 6.802214
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XX EhHX X HX X HAX X HX X HAX X HX X HAX X HX X HAX X HX X HX X HX X HX X HX X HX X HX X HX X HX X HhX X HhX X
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.8200849
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.8300802
.8300802
2.014428
.8400755
.8400755
2.062673
.8500707
.8500707
2.111973
.8600660
.8600660
2.162358
.8700613
.8700613
2.213857
.8800566
. 8800566
2.266500
.8900519
.8900519
2.320318
.9000472
.9000472
2.375344
.9100424
.9100424
2.431612
.9200377
.9200377
2.489155
.9300330
.9300330
2.548009
.9400283
.9400283
2.608213
.9500236
.9500236
2.669803
.9600189
.9600189
2.732819
.9700141
.9700141
2.797304
. 9800094
. 9800094
2.863299
.9900047
.9900047
2.930849
1.000000
1.000000

fkp =
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o

. 8828468
2.303152

.8896306
2.342796

.8963053
2.381936

.9028728
2.420567
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2.458687

.9156945
2.496292

.9219528
2.533382
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.9341739
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.9517957
2.711144

.9574878
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.9630919
2.778714
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.9740431
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.9793937
2.876389

.9846630
2.907989

.9898528
2.939120

. 9949646
2.969788

1.000000
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flp
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flp
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flp
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flp

o
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flp

o

srt =
flp

o

srt =
flp

o
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flp
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flp
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srt =
flp
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flp
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flp
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.8944799
6.644271

.9000498
6.488349

.9055854
6.334238

.9110874
6.181717

.9165563
6.030554

.9219928
5.880499

.9273974
5.731282

.9327708
5.582603

.9381133
5.434124

.9434256
5.285453

.9487082
5.136132

.9539614
4.985600

.9591860
4.833160

.9643822
4.677908

.9695506
4.518626

.9746915
4.353579

.9798055
4.180123

.9848930
3.993822

. 9899543
3.786021

.9949898
3.534287
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fIm
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fim

fim

fim

fim

fm

fim
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.354550

.387102

.420850

.455906

.492400

.530482

.570329

.612151

.656201

.702787
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.805199

.862136

.923937

.991756

.067265

.153047

.253481

.377166
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.999995



inegs.txt
fjp = 3.000000 fip = 3.000000 flp = 3.000005
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Appendix B. Numerical Validation of Theorem 35
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implicit real*8(a-h,o-2z)
complex*16 a,b,c,cdsqrt,xl,x2,x3,dcmplx

c
c Program "ctausc.for".

c

c This program is used to verify numerically the assertion made

c in part G of Theorem 35.

c

c *** The critical value of tau, i.e., tauo(nu**2), is evaluated for
c *** each given value of nu (the Courant number).

c

c *** Given any (nu,tau), the spectral radius of the amplification

c *** matrix is a function of the phase angle theta. The least upper
c *** bound (denoted by "am") of the spectral radii over the range

c *** -pi < theta .le. pi is evaluated for each given (nu,tau).

c

c *** When nu is replaced by -nu, each of the two resulting
amplification

c *** factors (defined in Eqg. (4.7)) becomes the complex conjugate of
that

c *** before sign-change. Thus the spectral radius does not change as nu
c *** is replaced by -nu. For this reason, the range of nu can be
limited

c *** to nu. ge. 0.

*** When theta is replaced by -theta, each of the two resulting

*** amplification factors also becomes the complex conjugate of

*** that before sign-change. Thus the range of theta can be limited
***% to 0 .le. theta .le. pi.

*** Theorems 16 and 18 imply that the least upper bound am = 1 if
*** nu = 1 and tau .ge. 1 (Note: According to Eq. (4.7), the value

*** of the principal amplification factor = 1 when theta = 0. Thus
*** am .ge. 1 for any (nu,tau). In turn, this implies that am =1
*** for any (nu,tau) which meets the condition Eg. (4.2)). Moreover,

*** Theorems 6 and 12 imply that am > 1 if nu > 1 regardless the

*** value assumed by tau. Thus numerical results may not be consistent
*** with theoretical predictions at the singular case nu = 1 if

*** round-off errors are not controlled carefully. For this reason,
*** g statement "if (dabs(x-1.d0).lt.ep) x=1.d0" is added in the code
*** to insure that the value of x is really "1" as intended. Here

***% ep (>0) is an input parameter and assumes to be very small.

X = nu.
z = The phase angle theta of a Fourier component.
nx = numpber of the values of nu.

nt = number of the values of tau with tau>tauo (tau<tauo) for
each value of nu. Here tauo is the critical value of tau
associated with a given value of nu. Because the case with
tau=tauo is always considered, there are (2*nt+l) values
of tau associated with each value of nu, i.e.,

a0 0c0c00000c00000c00000000000000a0

tauo* (1-dt*nt), tauo* (l-dt*(nt-1)), ., tauo*(l-dt), tauo,
tauo* (1+dt), ..., tauo* (l+dt*(nt-1)), tauo* (l+dt*n).

nz = number of the intervals over the domain
0 .le. theta .le. pi.

xs = The initial value of nu.

fkp(s) = (s-1.d0+dsqgrt(5.d0*s**2-2.d0*s+1.d0))/(2.d0*s)
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flm(s) = (4.d0-s-2.d0*dsqgrt (2.d0* (2.d0-s-s**2))) /s

¢}
pi = 3.1415926535897932d0
nx = 25
nt = 5
nz = 1000
xs = 0.d0
dx = 5.d-2
dt = 1.d-4
ep = 1.4d-7
c2 = 3.d40/11.d0
dz = pi/dfloat (nz)
X = Xs-dx
nzp = nz+l
ts = 1.d0-dt*dfloat (nt+1)
nt2p = nt*2+1
c
open (unit=8,file='ctausc.txt')
write (8,10)
write (8,15)
write (8,20) nx,nt,nz
write (8,30) xs,dx,dt,ep
write (8,15)
do 200 1 = 1,nx
x = X+dx
if (dabs(x-1.d0).lt.ep) x=1.d0
XX = X**2
if (xx.eq.0.d0) tauo = 0.dO0
if (xx.gt.0.d0.and.xx.le.c2) tauo = flm(xx)
if (xx.gt.c2) tauo = fkp(xx)
tau = tauo*ts
dtau = tauo*dt
do 200 j = 1,nt2p
tau = taut+dtau
am = 0.d0
z = -dz
do 100 k = 1,nzp
z = z+dz
z1l = dcos(z/2.d0)
z2 = dsin(z/2.d0)
ar = 1.d0+tau
ai = 0.d0
br = -2.d0*tau*zl
bi = x*(3.d0+tau) *z2
cr = - ((1.d0 - tau)*zl**2 4+ (1.d0 + x**2)*z2**2)
ci = -x*(1.d0 + tau) *zl*z2
a = dcmplx(ar,ai)
b = dcmplx (br,bi)
c = dcmplx(cr,ci)
x1 = (-b + cdsgrt(b**2 - 4.d0*a*c))/(2.d0*a)
x2 = (-b - cdsgrt(b**2 - 4.d0*a*c))/(2.d0*a)
al = cdabs (x1)
a2 = cdabs (x2)
am = dmaxl (al,a2,am)
100 continue
write (8,40) x,tauo,tau,am
200 continue
close (unit=8)
10 format (' ***** The output for the code "ctausc.for". *xx*x*x1)
15 format (' *****************************************************')
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20 format (

30 format (
40 format (
*
stop
end
0
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nx
XS
nu
am

=',i4," nz =',1i4)
dx =',gl4.7,' dt =',gl4.7,"' ep =',gl4.7)

tauo =',gl14.7,"
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tau =',gl4.7,






ek

nx
XS
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu

v

25 nt =
0.000000

-

ek

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.5000E-01
.5000E-01
.5000E-01
.5000E-01
.5000E-01
.5000E-01
.5000E-01
.5000E-01
.5000E-01
.5000E-01
.5000E-01
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1500
.1500
.1500
.1500
.1500
.1500
.1500
.1500
.1500
.1500
.1500
.2000
.2000
.2000
.2000
.2000
.2000
.2000
.2000
.2000
.2000
.2000
.2500
.2500
.2500

OCOOOOOOOOOO

[elololololololololololololololololololololololololololololololololololololololololololelol ol o)

R R R S R o

ctauscBText.txt

5 nz =1000

*

Tedededed

The output for the code "ctausc.for"
ek dddkhhhhhhdh bt bbbkt h bbbk h itk hs

dx,=,0;5000000€-01 dt = 0.1000000€-03
tauo = 0.000000 tau = 0.000000

tauo = 0.000000 tau = 0.000000

tauo = 0.000000 tau = 0.000000

tauo = 0.000000 tau = 0.000000

tauo = 0.000000 tau = 0.000000

tauo = 0.000000 tau = 0.000000

tauo = 0.000000 tau = 0.000000

tauo = 0.000000 tau = 0.000000

tauo = 0.000000 tau = 0.000000

tauo = 0.000000 tau = 0.000000

tauo = 0.000000 tau = 0.000000

tauo = 0.2814261E-02 tau = 0.2812854E-02
tauo = 0.2814261E-02 tau = 0.2813136E-02
tauo = 0.2814261E-02 tau = 0.2813417E-02
tauo = 0.2814261E-02 tau = 0.2813699E-02
tauo = 0.2814261E-02 tau = 0.2813980E-02
tauo = 0.2814261E-02 tau = 0.2814261E-02
tauo = 0.2814261E-02 tau = 0.2814543E-02
tauo = 0.2814261E-02 tau = 0.2814824E-02
tauo = 0.2814261E-02 tau = 0.2815106E-02
tauo = 0.2814261E-02 tau = 0.2815387E-02
tauo = 0.2814261E-02 tau = 0.2815669E-02
tauo = 0.1127835E-01 tau = 0.1127272E-01
tauo = 0.1127835E-01 tau = 0.1127384E-01
tauo = 0.1127835E-01 tau = 0.1127497E-01
tauo = 0.1127835E-01 tau = 0.1127610E-01
tauo = 0.1127835E-01 tau = 0.1127723E-01
tauo = 0.1127835E-01 tau = 0.1127835E-01
tauo = 0.1127835E-01 tau = 0.1127948E-01
tauo = 0.1127835E-01 tau = 0.1128061E-01
tauo = 0.1127835E-01 tau = 0.1128174E-01
tauo = 0.1127835E-01 tau = 0.1128287E-01
tauo = 0.1127835E-01 tau = 0.1128399E-01
tauo = 0.2545752E-01 tau = 0.2544479E-01
tauo = 0.2545752E-01 tau = 0.2544734E-01
tauo = 0.2545752E-01 tau = 0.2544988E-01
tauo = 0.2545752E-01 tau = 0.2545243e-01
tauo = 0.2545752E-01 tau = 0.2545498E-01
tauo = 0.2545752E-01 tau = 0.2545752E-01
tauo = 0.2545752E-01 tau = 0.2546007E-01
tauo = 0.2545752E-01 tau = 0.2546261E-01
tauo = 0.2545752E-01 tau = 0.2546516E-01
tauo = 0.2545752E-01 tau = 0.2546770E-01
tauo = 0.2545752E-01 tau = 0.2547025E-01
tauo = 0.4546499e-01 tau = 0.4544225E-01
tauo = 0.4546499E-01 tau = 0.4544680E-01
tauo = 0.4546499e-01 tau = 0.4545135E-01
tauo = 0.4546499E-01 tau = 0.4545589E-01
tauo = 0.4546499e-01 tau = 0.4546044E-01
tauo = 0.4546499E-01 tau = 0.4546499E-01
tauo = 0.4546499e-01 tau = 0.4546953E-01
tauo = 0.4546499E-01 tau = 0.4547408E-01
tauo = 0.4546499e-01 tau = 0.4547862E-01
tauo = 0.4546499E-01 tau = 0.4548317E-01
tauo = 0.4546499e-01 tau = 0.4548772E-01
tauo = 0.7146911E-01 tau = 0.7143338E-01
tauo = 0.7146911E-01 tau = 0.7144052E-01
tauo = 0.7146911E-01 tau = 0.7144767E-01
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am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am

0.1000000E-06

RPRRPRRRRPRRPRERRPRRPRRERRPERRPRRRRRPRRRRRRPRRRRRRPERRRRRPRRPRRRPRRRRRRRRRRRR R R

.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000001740909
.0000001391629
.0000001042349
.0000000694331
.0000000346952
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000006672229
.0000005331916
.0000003994142
.0000002661220
.0000001328300
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000013933207
.0000011137094
.0000008340988
.0000005555428
.0000002775110
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000022161825
.0000017713023
.0000013266296
.0000008832441
.0000004411696
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000029597671
.0000023649173
.0000017704610



nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu

.2500
.2500
.2500
.2500
.2500
.2500
.2500
.2500
.3000
.3000
.3000
.3000
.3000
.3000
.3000
.3000
.3000
.3000
.3000
.3500
.3500
.3500
.3500
.3500
.3500
.3500
.3500
.3500
.3500
.3500
.4000
.4000
.4000
.4000
.4000
.4000
.4000
.4000
.4000
.4000
.4000
.4500
.4500
.4500
.4500
.4500
.4500
.4500
.4500
.4500
.4500
.4500
.5000
.5000
.5000
.5000
.5000
.5000
.5000
.5000
.5000
.5000
.5000

[elelolololololololololololololololololololololololololololololololololololololololololololololololololololololololololelol oY)

tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
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ctauscBText.txt

.7146911E-01
.7146911E-01
.7146911E-01
.7146911E-01
.7146911E-01
.7146911E-01
.7146911E-01
.7146911E-01
.1037043
.1037043
.1037043
.1037043
.1037043
.1037043
.1037043
.1037043
.1037043
.1037043
.1037043
.1424870
.1424870
.1424870
.1424870
.1424870
.1424870
.1424870
.1424870
.1424870
.1424870
.1424870
.1882382
.1882382
.1882382
.1882382
.1882382
.1882382
.1882382
.1882382
.1882382
.1882382
.1882382
.2415157
.2415157
.2415157
.2415157
.2415157
.2415157
.2415157
.2415157
.2415157
.2415157
.2415157
.3030615
.3030615
.3030615
.3030615
.3030615
.3030615
.3030615
.3030615
.3030615
.3030615
.3030615

tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau

[elelolololololololololololololololololololololololololololololololololololololololololololololololololololololololololelele o]
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.7145482E-01
.7146196E-01
.7146911E-01
.7147626E-01
.7148340E-01
.7149055E-01
.7149770E-01
.7150484E-01
.1036525
.1036629
.1036732
.1036836
.1036940
.1037043
.1037147
.1037251
.1037354
.1037458
.1037562
.1424158
.1424301
.1424443
.1424586
.1424728
.1424870
.1425013
.1425155
.1425298
.1425440
.1425583
.1881441
.1881629
.1881817
.1882006
.1882194
.1882382
.1882570
.1882758
.1882947
.1883135
.1883323
.2413949
.2414191
. 2414433
.2414674
.2414916
. 2415157
.2415399
.2415640
.2415882
.2416123
.2416365
.3029100
.3029403
.3029706
.3030009
.3030312
.3030615
.3030918
.3031222
.3031525
.3031828
.3032131

am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am

RPRRPRRERRPRRPRRPRERERPRRPRERRRPRRRRRRRRRRRRRRRRRRPRRRERRRRRRERRRRRRRE R R R R R R R

.0000011789100
.0000005880919
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000034247159
.0000027345694
.0000020464043
.0000013620442
.0000006790801
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000034155413
.0000027246816
.0000020381007
.0000013549685
.0000006753657
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000027984482
.0000022284014
.0000016634636
.0000011036658
.0000005490377
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000016114364
.0000012754027
.0000009460213
.0000006236255
.0000003082242
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000003301576
.0000002505240
.0000001771524
.0000001104901
.0000000511002
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000



nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu

.5500
.5500
.5500
.5500
.5500
.5500
.5500
.5500
.5500
.5500
.5500
.6000
.6000
.6000
.6000
.6000
.6000
.6000
.6000
.6000
.6000
.6000
.6500
.6500
.6500
.6500
.6500
.6500
.6500
.6500
.6500
.6500
.6500
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7500
.7500
.7500
.7500
.7500
.7500
.7500
.7500
.7500
.7500
.7500
.8000
.8000
.8000
.8000
. 8000
.8000
. 8000
.8000

[elelolololololololololololololololololololololololololololololololololololololololololololololololololololololololololelol oY)

tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
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.3732664
.3732664
.3732664
.3732664
.3732664
.3732664
.3732664
.3732664
.3732664
.3732664
.3732664
.4490661
.4490661
.4490661
.4490661
.4490661
.4490661
.4490661
.4490661
.4490661
.4490661
.4490661
.5277985
.5277985
.5277985
.5277985
.5277985
.5277985
.5277985
.5277985
.5277985
.5277985
.5277985
.6069004
.6069004
.6069004
.6069004
.6069004
.6069004
.6069004
.6069004
.6069004
.6069004
.6069004
.6840671
.6840671
.6840671
.6840671
.6840671
.6840671
.6840671
.6840671
.6840671
.6840671
.6840671
.7575481
.7575481
.7575481
.7575481
.7575481
.7575481
.7575481
.7575481

ctauscBText.txt

tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau

[elelolololololololololololololololololololololololololololololololololololololololololololololololololololololololololelele o]
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.3730798
.3731171
.3731544
.3731918
.3732291
.3732664
.3733038
.3733411
.3733784
.3734157
.3734531
.4488415
.4488864
.4489313
.4489763
.4490212
.4490661
.4491110
.4491559
.4492008
.4492457
.4492906
.5275346
.5275874
. 5276402
.5276930
.5277457
.5277985
.5278513
.5279041
.5279568
.5280096
.5280624
.6065970
.6066577
.6067184
.6067790
.6068397
.6069004
.6069611
.6070218
.6070825
.6071432
.6072039
.6837251
.6837935
.6838619
.6839303
.6839987
.6840671
.6841355
.6842039
.6842723
.6843407
.6844091
.7571694
.7572451
.7573209
.7573966
.7574724
.7575481
.7576239
.7576996

am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
am
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.0000000020424
.0000000010635
.0000000004564
.0000000001377
.0000000000175
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000004655
.0000000002389
.0000000001010
.0000000000300
.0000000000038
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000003183
.0000000001631
.0000000000689
.0000000000204
.0000000000026
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000003381
.0000000001732
.0000000000731
.0000000000216
.0000000000027
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000004786
.0000000002453
.0000000001036
.0000000000307
.0000000000038
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000000000
.0000000008671
.0000000004446
.0000000001878
.0000000000557
.0000000000069
.0000000000000
.0000000000000
.0000000000000



nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu
nu

.8000
.8000
.8000
.8500
.8500
.8500
.8500
.8500
.8500
.8500
.8500
.8500
.8500
.8500
.9000
.9000
.9000
.9000
.9000
.9000
.9000
.9000
.9000
.9000
.9000
.9500
.9500
.9500
.9500
.9500
.9500
.9500
.9500
.9500
.9500
.9500
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.100
.100
.100
.100
.100

[elelolololololololololololololololololololololololololololololololole o]
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tauo
tauo
tauo
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tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
tauo
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.7575481
.7575481
.7575481
.8262315
.8262315
.8262315
.8262315
.8262315
.8262315
.8262315
.8262315
.8262315
.8262315
.8262315
.8895703
.8895703
.8895703
.8895703
.8895703
.8895703
.8895703
.8895703
.8895703
.8895703
.8895703
.9474412
.9474412
.9474412
.9474412
.9474412
.9474412
.9474412
.9474412
.9474412
.9474412
.9474412

RPRRPRRPRRRPRRPRRRPRRPRRRRPERRPRRRPRRRRRR

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.047565
.047565
.047565
.047565
.047565
.047565
.047565
.047565
.047565
.047565
.047565
.090535
.090535
.090535
.090535
.090535
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.7577754
.7578512
.7579269
.8258184
.8259010
.8259836
.8260663
.8261489
.8262315
.8263141
.8263967
.8264794
.8265620
. 8266446
.8891255
.8892145
.8893035
. 8893924
. 8894814
.8895703
.8896593
.8897482
.8898372
.8899261
.8900151
. 9469675
.9470622
.9471570
.9472517
.9473465
.9474412
.9475360
.9476307
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